scholarly journals Miniaturized On-Chip NFC Antenna versus Screen-Printed Antenna for the Flexible Disposable Sensor Strips

IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 309-319
Author(s):  
Atefeh Kordzadeh ◽  
Dominik Holzmann ◽  
Alfred Binder ◽  
Thomas Moldaschl ◽  
Johannes Sturm ◽  
...  

With the ongoing trend toward miniaturization via system-on-chip (SoC), both radio-frequency (RF) SoCs and on-chip multi-sensory systems are gaining significance. This paper compares the inductance of a miniaturized on-chip near field communication (NFC) antenna versus the conventional screen-printed on-substrate ones that have been used for the transfer of sensory data from a chip to a cell phone reader. Furthermore, the transferred power efficiency in a coupled NFC system is calculated for various chip coil geometries and the results are compared. The proposed NFC antenna was fabricated via a lithography process for an application-specific integrated circuit (ASIC) chip. The chip had a small area of 2.4 × 2.4 mm2, therefore a miniaturized NFC antenna was designed, whereas the screen-printed on-substrate antennas had an area of 35 × 51 mm2. This paper investigates the effects of different parameters such as conductor thickness and materials, double layering, and employing ferrite layers with different thicknesses on the performance of the on-chip antennas using full-wave simulations. The presence of a ferrite layer to increase the inductance of the antenna and mitigate the interactions with backplates has proven useful. The best performance was obtained via double-layering of the coils, which was similar to on-substrate antennas, while a size reduction of 99.68% was gained. Consequently, the coupling factors and maximum achievable power transmission efficiency of the on-chip antenna and on-substrate antenna were studied and compared.

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1963 ◽  
Author(s):  
Xuan-Tu Cao ◽  
Wan-Young Chung

Recently, radio frequency (RF) energy harvesting (RFEH) has become a promising technology for a battery-less sensor module. The ambient RF radiation from the available sources is captured by receiver antennas and converted to electrical energy, which is used to supply smart sensor modules. In this paper, an enhanced method to improve the efficiency of the RFEH system using strongly coupled electromagnetic resonance technology was proposed. A relay resonator was added between the reader and tag antennas to improve the wireless power transmission efficiency to the sensor module. The design of the relay resonator was based on the resonant technique and near-field magnetic coupling concept to improve the communication distance and the power supply for a sensor module. It was designed such that the self-resonant frequencies of the reader antenna, tag antenna, and the relay resonator are synchronous at the HF frequency (13.56MHz). The proposed method was analyzed using Thevenin equivalent circuit, simulated and experimental validated to evaluate its performance. The experimental results showed that the proposed harvesting method is able to generate a great higher power up to 10 times than that provided by conventional harvesting methods without a relay resonator. Moreover, as an empirical feasibility test of the proposed RF energy harvesting device, a smart sensor module which is placed inside a meat box was developed. It was utilized to collect vital data, including temperature, relative humidity and gas concentration, to monitor the freshness of meat. Overall, by exploiting relay resonator, the proposed smart sensor tag could continuously monitor meat freshness without any batteries at the innovative maximum distance of approximately 50 cm.


2012 ◽  
Vol 67 (1) ◽  
pp. 100-104 ◽  
Author(s):  
Kenji Okabe ◽  
Wanghoon Lee ◽  
Yasoo Harada ◽  
Makoto Ishida

2017 ◽  
Vol 27 (4) ◽  
pp. 404-406 ◽  
Author(s):  
Yanghyo Kim ◽  
Sai-Wang Tam ◽  
Tatsuo Itoh ◽  
Mau-Chung Frank Chang
Keyword(s):  
60 Ghz ◽  

2021 ◽  
Vol 11 (9) ◽  
pp. 4309
Author(s):  
Sebastian Micus ◽  
Laura Padani ◽  
Michael Haupt ◽  
Götz T. Gresser

We developed and evaluated different textile-based inductive coils for near-field wireless power transmission. The technology uses electromagnetic induction for the contactless transfer of electrical energy. Therefore, we investigated various methods for the attachment of conductive materials on a textile-based material and the production of textile-based coils based on QI standard. Afterwards, the textile-based coils were examined and evaluated due to their specific quality characteristics. This happens by calculating the transmission quality and the maximum efficiency of the system which enables comparison of different coil systems and indicates the transmission efficiency of the systems.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Mei Yu Soh ◽  
S. Lawrence Selvaraj ◽  
Lulu Peng ◽  
Kiat Seng Yeo

LEDs are highly energy efficient and have substantially longer lifetimes compared to other existing lighting technologies. In order to facilitate the new generation of LED devices, approaches to improve power efficiency with increased integration level for lighting device should be analysed. This paper proposes a fully on-chip integrated LED driver design implemented using heterogeneous integration of gallium nitride (GaN) devices atop BCD circuits. The performance of the proposed design is then compared with the conventional fully on-board integration of power devices with the LED driver integrated circuit (IC). The experimental results confirm that the fully on-chip integrated LED driver achieves a consistently higher power efficiency value compared with the fully on-board design within the input voltage range of 4.5–5.5 V. The maximal percentage improvement in the efficiency of the on-chip solution compared with the on-board solution is 18%.


Author(s):  
A.J. van den Biggelaar ◽  
D.P.P. Daverveld ◽  
A.C.F. Reniers ◽  
A.B. Smolders ◽  
U. Johannsen

Abstract One of the current trends in the integrated circuit (IC) development is the integration of antennas on-chip or in the package of the IC. This poses challenges in the production testing process of the packaged IC, as the antenna functionality has to be included and at least one of the signal ports cannot be accessed at a conducted manner. In order to measure the reflection coefficient of an integrated antenna, a contactless characterization method (CCM) can be used. In this paper, the practicality of a CCM is assessed, having the application of a cost-effective high-volume testing procedure for integrated antennas in mind. It is shown that the CCM yields accurate results for different imperfections in the measurement setup. Moreover, measurement results around 33 GHz using a connectorized patch antenna are shown, which experimentally verify the validity of using the CCM under near-field conditions.


Author(s):  
P. K. Gentner ◽  
M. Wiessflecker ◽  
H. Arthaber ◽  
A. L. Scholtz ◽  
C. F. Mecklenbrauker
Keyword(s):  
Rfid Tag ◽  

2008 ◽  
Vol 56 (6) ◽  
pp. 1397-1404 ◽  
Author(s):  
Xuesong Chen ◽  
Wooi Gan Yeoh ◽  
Yeung Bun Choi ◽  
Hongyu Li ◽  
R. Singh

Sign in / Sign up

Export Citation Format

Share Document