scholarly journals Combined Inhibition of TGF-β1-Induced EMT and PD-L1 Silencing Re-Sensitizes Hepatocellular Carcinoma to Sorafenib Treatment

2021 ◽  
Vol 10 (9) ◽  
pp. 1889
Author(s):  
Ritu Shrestha ◽  
Prashanth Prithviraj ◽  
Kim R. Bridle ◽  
Darrell H. G. Crawford ◽  
Aparna Jayachandran

Hepatocellular carcinoma (HCC) is the most common type of primary hepatic malignancy. HCC is one of the leading causes of cancer deaths worldwide. The oral multi-tyrosine kinase inhibitor Sorafenib is the standard first-line therapy in patients with advanced unresectable HCC. Despite the significant survival benefit in HCC patients post treatment with Sorafenib, many patients had progressive disease as a result of acquiring drug resistance. Circumventing resistance to Sorafenib by exploring and targeting possible molecular mechanisms and pathways is an area of active investigation worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process allowing epithelial cells to assume mesenchymal traits. HCC tumour cells undergo EMT to become immune evasive and develop resistance to Sorafenib treatment. Immune checkpoint molecules control immune escape in many tumours, including HCC. The aim of this study is to investigate whether combined inhibition of EMT and immune checkpoints can re-sensitise HCC to Sorafenib treatment. Post treatment with Sorafenib, HCC cells PLC/PRF/5 and Hep3B were monitored for induction of EMT and immune checkpoint molecules using quantitative reverse transcriptase (qRT)- PCR, western blot, immunofluorescence, and motility assays. The effect of combination treatment with SB431542, a specific inhibitor of the transforming growth factor (TGF)-β receptor kinase, and siRNA mediated knockdown of programmed cell death protein ligand-1 (PD-L1) on Sorafenib resistance was examined using a cell viability assay. We found that three days of Sorafenib treatment activated EMT with overexpression of TGF-β1 in both HCC cell lines. Following Sorafenib exposure, increase in the expression of PD-L1 and other immune checkpoints was observed. SB431542 blocked the TGF-β1-mediated EMT in HCC cells and also repressed PD-L1 expression. Likewise, knockdown of PD-L1 inhibited EMT. Moreover, the sensitivity of HCC cells to Sorafenib was enhanced by combining a blockade of EMT with SB431542 and knockdown of PD-L1 expression. Sorafenib-induced motility was attenuated with the combined treatment of SB431542 and PD-L1 knockdown. Our findings indicate that treatment with Sorafenib induces EMT and expression of immune checkpoint molecules, which contributes to Sorafenib resistance in HCC cells. Thus, the combination treatment strategy of inhibiting EMT and immune checkpoint molecules can re-sensitise HCC cells to Sorafenib.

2020 ◽  
Vol 10 (4) ◽  
pp. 648-655
Author(s):  
Syarinta Adenina ◽  
Melva Louisa ◽  
Vivian Soetikno ◽  
Wawaimuli Arozal ◽  
Septelia Inawati Wanandi

Purpose : This study was intended to find out the impact of alpha mangostin administration on the epithelial-mesenchymal transition (EMT) markers and TGF-β/Smad pathways in hepatocellular carcinoma Hep-G2 cells surviving sorafenib. Methods: Hepatocellular carcinoma HepG2 cells were treated with sorafenib 10 μM. Cells surviving sorafenib treatment (HepG2surv) were then treated vehicle, sorafenib, alpha mangostin, or combination of sorafenib and alpha mangostin. Afterward, cells were observed for their morphology with an inverted microscope and counted for cell viability. The concentrations of transforming growth factor (TGF)-β1 in a culture medium were examined using ELISA. The mRNA expressions of TGF-β1, TGF-β1-receptor, Smad3, Smad7, E-cadherin, and vimentin were evaluated using quantitative reverse transcriptase–polymerase chain reaction. The protein level of E-cadherin was also determined using western blot analysis. Results: Treatment of alpha mangostin and sorafenib caused a significant decrease in the viability of sorafenib-surviving HepG2 cells versus control (both groups with P<0.05). Our study found that alpha mangostin treatment increased the expressions of vimentin (P<0.001 versus control). In contrast, alpha mangostin treatment tends to decrease the expressions of Smad7 and E-cadherin (both with P>0.05). In line with our findings, the expressions of TGF-β1 and Smad3 are significantly upregulated after alpha mangostin administration (both with P<0.05) versus control. Conclusion: Alpha mangostin reduced cell viability of sorafenib-surviving HepG2 cells; however, it also enhanced epithelial–mesenchymal transition markers by activating TGF-β/Smad pathways.


2021 ◽  
Author(s):  
Zhanjun Chen ◽  
Leyang Xiang ◽  
Huohui Ou ◽  
Yinghao Fang ◽  
Yuyan Xu ◽  
...  

Abstract Emerging evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the metastasis and recurrence of hepatocellular carcinoma (HCC).Kinds of lncRNAs were found to be involved in regulating epithelial-mesenchymal transition (EMT) or stem-like traits in human cancers, however, the molecular mechanism and signaling pathways targeting EMT and stemness remains largely unknown. Previously, we found that linc00261 was down-regulated in HCC and associated with multiple worse clinic pathological parameters and poor prognosis. Here, we show that linc00261 was down-regulated in TGF-β1 stimulated cells, and forced expression of linc00261 attenuated EMT and stem-like traits in HCC.Linc00261 also inhibited the tumor sphere forming in vitro and decreased the tumorigenicity in vivo. Furthermore, we revealed that linc00261 suppressed the expression and phosphorylation of SMAD3 (p-SMAD3), which is a core transcriptional modulator in TGF-β1 signaling mediated EMT and the acquisition of stemness traits. A negative correlation between linc00261 and p-SMAD3 was determined in HCC samples.Conclusion: Our study revealed that linc00261suppressed EMT and stem-like traits of HCC cells by inhibiting TGF-β1/SMAD3 signaling.


2021 ◽  
Vol 28 (3) ◽  
pp. 2150-2172
Author(s):  
Ritu Shrestha ◽  
Kim R. Bridle ◽  
Lu Cao ◽  
Darrell H. G. Crawford ◽  
Aparna Jayachandran

Sorafenib, an oral multi-tyrosine kinase inhibitor, has been the first-line therapy for the treatment of patients with advanced HCC, providing a survival benefit of only three months in approximately 30% of patients. Cancer stem cells (CSCs) are a rare tumour subpopulation with self-renewal and differentiation capabilities, and have been implicated in tumour growth, recurrence and drug resistance. The process of epithelial-to-mesenchymal transition (EMT) contributes to the generation and maintenance of the CSC population, resulting in immune evasion and therapy resistance in several cancers, including HCC. The aim of this study is to target the chemoresistant CSC population in HCC by assessing the effectiveness of a combination treatment approach with Sorafenib, an EMT inhibitor and an immune checkpoint inhibitor (ICI). A stem-cell-conditioned serum-free medium was utilised to enrich the CSC population from the human HCC cell lines Hep3B, PLC/PRF/5 and HepG2. The anchorage independent spheres were characterised for CSC features. The human HCC-derived spheres were assessed for EMT status and expression of immune checkpoint molecules. The effect of combination treatment with SB431542, an EMT inhibitor, and siRNA-mediated knockdown of programmed cell death protein ligand-1 (PD-L1) or CD73 along with Sorafenib on human HCC-derived CSCs was examined with cell viability and apoptosis assays. The three-dimensional spheres enriched from human HCC cell lines demonstrated CSC-like features. The human HCC-derived CSCs also exhibited the EMT phenotype along with the upregulation of immune checkpoint molecules. The combined treatment with SB431542 and siRNA-mediated PD-L1 or CD73 knockdown effectively enhanced the cytotoxicity of Sorafenib against the CSC population compared to Sorafenib alone, as evidenced by the reduced size and proliferation of spheres. Furthermore, the combination treatment of Sorafenib with SB431542 and PD-L1 or CD73 siRNA resulted in an increased proportion of an apoptotic population, as evidenced by flow cytometry analysis. In conclusion, the combined targeting of EMT and immune checkpoint molecules with Sorafenib can effectively target the CSC tumour subpopulation.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


2020 ◽  
Vol 20 (9) ◽  
pp. 720-727
Author(s):  
Jianguo Qiu ◽  
Wei Tang ◽  
Chengyou Du

Background: Immune checkpoint modulators, such as the programmed death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitor, cytotoxic T-Lymphocyte-associated antigen 4 (CTLA-4) inhibitor have been investigated with encouraging results for hepatocellular carcinoma (HCC). However, the safety of this strategy in patients with previous liver transplantation (LT) is not well studied. Objective: To explore the safety and feasibility of immune checkpoints inhibitors in recurrent and metastatic HCC patients on a background of LT. Methods: A case of recurrent, refractory, metastatic HCC after LT, where PD-1 inhibitor was initiated, was described and related literature was reviewed. Results: There was complete remission in lung metastases and the partial radiological response of metastatic retroperitoneal lymph node to the drug with no liver graft rejection after 13 cycles of PD- 1 inhibitor injection. PD-1inhibitor, at least in this patient, was verified to play an important role in controlling tumor progression and prolonging patient survival. Conclusions: This novel drug might be a useful method to allow doctors to guarantee a better chance for long-term survival in recurrent, metastatic HCC patients with the previous LT. However, it should be used with caution in allograft recipients due to the risk of acute graft rejection, further larger, prospective studies are needed to determine optimal immunomodulatory therapy to achieve optimal anti-tumor efficacy with transplant liver preservation.


2021 ◽  
Author(s):  
Yanlin Du ◽  
Da Zhang ◽  
Yiru Wang ◽  
Ming Wu ◽  
Cuilin Zhang ◽  
...  

A highly stable multifunctional aptamer was prepared for strengthening antitumor immunity through a dual immune checkpoint blockade of CTLA-4 and PD-L1.


2021 ◽  
Vol 22 (11) ◽  
pp. 5543
Author(s):  
Jitka Soukupova ◽  
Andrea Malfettone ◽  
Esther Bertran ◽  
María Isabel Hernández-Alvarez ◽  
Irene Peñuelas-Haro ◽  
...  

(1) Background: The transforming growth factor (TGF)-β plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-β expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-β induced suppressor effects, responding to this cytokine undergoing epithelial–mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-β in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-β when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-β in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Bin Yang ◽  
Chunping Wang ◽  
Hui Xie ◽  
Yiwu Wang ◽  
Jiagan Huang ◽  
...  

Abstract Molecular targeted agents, such as sorafenib, remain the only choice of an antitumor drug for the treatment of advanced hepatocellular carcinoma (HCC). The Notch signaling pathway plays central roles in regulating the cellular injury/stress response, anti-apoptosis, or epithelial–mesenchymal transition process in HCC cells, and is a promising target for enhancing the sensitivity of HCC cells to antitumor agents. The ADAM metalloprotease domain-17 (ADAM-17) mediates the cleavage and activation of Notch protein. In the present study, microRNA-3163 (miR-3163), which binds to the 3′-untranslated region of ADAM-17, was screened using online methods. miRDB and pre-miR-3163 sequences were prepared into lentivirus particles to infect HCC cells. miR-3163 targeted ADAM-17 and inhibited the activation of the Notch signaling pathway. Infection of HCC cells with miR-3163 enhanced their sensitivity to molecular targeted agents, such as sorafenib. Therefore, miR-3163 may contribute to the development of more effective strategies for the treatment of advanced HCC.


Sign in / Sign up

Export Citation Format

Share Document