scholarly journals Oxidative Stress in Cutaneous Lichen Planus—A Narrative Review

2021 ◽  
Vol 10 (12) ◽  
pp. 2692
Author(s):  
Simona Roxana Georgescu ◽  
Cristina Iulia Mitran ◽  
Madalina Irina Mitran ◽  
Ilinca Nicolae ◽  
Clara Matei ◽  
...  

Lichen planus (LP) is a chronic, immune-mediated inflammatory skin condition that mainly affects the skin (cutaneous LP, CLP) and oral mucosa (oral LP, OLP). However, the mechanisms involved in the pathogenesis of the disease are not fully elucidated. Over time, several theories that could explain the appearance of LP lesions have been postulated. The key players in LP pathogenesis are the inflammatory infiltrate consisting of T cells and the proinflammatory cytokines. The cytokines stimulate the production of reactive oxygen species that induce cell apoptosis, a defining element encountered in LP. The lead inquiry triggered by this revolves around the role of oxidative stress in LP development. There are currently numerous studies showing the involvement of oxidative stress in OLP, but in terms of CLP, data are scarce. In this review, we analyze for the first time the currently existing studies on oxidative stress in CLP and summarize the results in order to assess the role of oxidative stress in skin lesions offering a fresher updated perspective.

2005 ◽  
Vol 77 (4) ◽  
pp. 695-715 ◽  
Author(s):  
Michele A. Zacks ◽  
Jian-Jun Wen ◽  
Galina Vyatkina ◽  
Vandanajay Bhatia ◽  
Nisha Garg

There is growing evidence to suggest that chagasic myocardia are exposed to sustained oxidative stress-induced injuries that may contribute to disease progression. Pathogen invasion- and replication-mediated cellular injuries and immune-mediated cytotoxic reactions are the common source of reactive oxygen species (ROS) in infectious etiologies. However, our understanding of the source and role of oxidative stress in chagasic cardiomyopathy (CCM) remains incomplete. In this review, we discuss the evidence for increased oxidative stress in chagasic disease, with emphasis on mitochondrial abnormalities, electron transport chain dysfunction and its role in sustaining oxidative stress in myocardium. We discuss the literature reporting the consequences of sustained oxidative stress in CCM pathogenesis.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1315 ◽  
Author(s):  
Alessia Lo Dico ◽  
Daniela Salvatore ◽  
Cristina Martelli ◽  
Dario Ronchi ◽  
Cecilia Diceglie ◽  
...  

Glioblastoma (GBM) is the most common astrocytic-derived brain tumor in adults, characterized by a poor prognosis mainly due to the resistance to the available therapy. The study of mitochondria-derived oxidative stress, and of the biological events that orbit around it, might help in the comprehension of the molecular mechanisms at the base of GBM responsiveness to Temozolomide (TMZ). Sensitive and resistant GBM cells were used to test the role of mitochondrial ROS release in TMZ-resistance. Chaperone-Mediated Autophagy (CMA) activation in relation to reactive oxygen species (ROS) release has been measured by monitoring the expression of specific genes. Treatments with H2O2 were used to test their potential in reverting resistance. Fluctuations of cytoplasmic ROS levels were accountable for CMA induction and cytotoxic effects observed in TMZ sensitive cells after treatment. On the other hand, in resistant cells, TMZ failed in producing an increase in cytoplasmic ROS levels and CMA activation, preventing GBM cell toxicity. By increasing oxidative stress, CMA activation was recovered, as also cell cytotoxicity, especially in combination with TMZ treatment. Herein, for the first time, it is shown the relation between mitochondrial ROS release, CMA activation and TMZ-responsiveness in GBM.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Federico Pietrocola ◽  
José Manuel Bravo-San Pedro

Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.


2021 ◽  
Vol 22 (3) ◽  
pp. 1296
Author(s):  
Yue Ruan ◽  
Subao Jiang ◽  
Adrian Gericke

Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.


2010 ◽  
Vol 63 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic ◽  
Rada Jesic-Vukicevic

Introduction. Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. Role of oxidative stress in paracetamol-induced liver injury. The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils, Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in paracetamol-induced oxidative stress. The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mito?chondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonu?cleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. Role of Kupffer cells in paracetamol-induced liver injury. Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. Role of neutrophils in paracetamol-induced liver injury. Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. Role of peroxynitrite in paracetamol-induced oxidative stress. Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. Conclusion. Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.


Lung ◽  
2021 ◽  
Author(s):  
Mario Cazzola ◽  
Paola Rogliani ◽  
Sundeep Santosh Salvi ◽  
Josuel Ora ◽  
Maria Gabriella Matera

AbstractThere is a possible role for oxidative stress, a state characterized by an altered balance between the production of free radicals or reactive oxygen species (ROS) and antioxidant defences, in coronavirus disease 2019 (COVID-19), the genesis of which is quite complex. Excessive oxidative stress could be responsible for the alveolar damage, thrombosis, and red blood cell dysregulation observed in COVID-19. Apparently, deficiency of glutathione (GSH), a low-molecular-weight thiol that is the most important non-enzymatic antioxidant molecule and has the potential to keep the cytokine storm in check, is a plausible explanation for the severe manifestations and death in COVID-19 patients. Thiol drugs, which are considered mucolytic, also possess potent antioxidant and anti-inflammatory properties. They exhibit antibacterial activity against a variety of medically important bacteria and may be an effective strategy against influenza virus infection. The importance of oxidative stress during COVID-19 and the various pharmacological characteristics of thiol-based drugs suggest a possible role of thiols in the treatment of COVID-19. Oral and intravenous GSH, as well as GSH precursors such as N-acetylcysteine (NAC), or drugs containing the thiol moiety (erdosteine) may represent a novel therapeutic approach to block NF-kB and address the cytokine storm syndrome and respiratory distress observed in COVID-19 pneumonia patients


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sunil Joshi ◽  
Ammon B. Peck ◽  
Saeed R. Khan

A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease.


2020 ◽  
Vol 2020 (4) ◽  
pp. 10-18
Author(s):  
Dmitriy Gildikov

In the review article, from the modern standpoint, oxidative stress is considered as a universal pathophysiological mechanism of the vast majority of diseases in animals. A brief review of the publication activity in the world on this topic; the significance of reactive oxygen species in the physiology and development of intracellular oxidative stress, the role of etiological factors that initiate their hyperproduction are presented, as well the methods of detecting oxidative stress are characterizited. General concepts of the antioxidant system of the animal body are examined, and the pathophysiological targets of oxidative stress in animals are generalized.


2021 ◽  
Vol 19 ◽  
Author(s):  
Tapan Behl ◽  
Gagandeep Kaur ◽  
Aayush Sehgal ◽  
Gokhan Zengin ◽  
Sukhbir Singh ◽  
...  

Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various pieces of evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family offering effective management and slowing down the progression of Parkinson’s disease. Method: Published papers were searched via MEDLINE, PubMed, etc. published to date for in-depth database collection. Results: The potential of oxidative damage may harm the non-targeted cells. It can also modulate the functions of central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerates the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed on the clinical trial designs based on the plant derived family of antioxidants. They are known to exert multifarious impact either way in neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.


2020 ◽  
Author(s):  
Jianfeng Li ◽  
Shaoyu Hu ◽  
Song Hao ◽  
Shengjia Huang ◽  
Yi Qin ◽  
...  

Abstract Background The role of gene and pathway in recurrence of Ewing sarcoma (ES) was not clear. Thus, we investigated the biological role and underlying mechanism of gene and pathway in recurrence of ES. Methods Data sets of patients with ES were collected from the GEO database. We used dataset GSE63155 and GSE63156 to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Results We can find that genes with significant interactions in the genes of the recurrence group include SRSF11, TRIM39, SOCS3,NUPL2,COPS5. They work primarily through the oxidative stress pathway. Conclusion Through our research, for the first time found that ES by SRSF11 TRIM39, SOCS3, NUPL2, COPS5 interaction, activation of phosphorylation of bone and oxidative stress is affecting tumor recurrence.


Sign in / Sign up

Export Citation Format

Share Document