scholarly journals Quantitative Detection of Disseminated Melanoma Cells by Trp-1 Transcript Analysis Reveals Stochastic Distribution of Pulmonary Metastases

2021 ◽  
Vol 10 (22) ◽  
pp. 5459
Author(s):  
Lenka Kyjacova ◽  
Rafael Saup ◽  
Melanie Rothley ◽  
Anja Schmaus ◽  
Tabea Wagner ◽  
...  

A better understanding of the process of melanoma metastasis is required to underpin the development of novel therapies that will improve patient outcomes. The use of appropriate animal models is indispensable for investigating the mechanisms of melanoma metastasis. However, reliable and practicable quantification of metastases in experimental mice remains a challenge, particularly if the metastatic burden is low. Here, we describe a qRT-PCR-based protocol that employs the melanocytic marker Trp-1 for the sensitive quantification of melanoma metastases in the murine lung. Using this protocol, we were able to detect the presence of as few as 100 disseminated melanoma cells in lung tissue. This allowed us to quantify metastatic burden in a spontaneous syngeneic B16-F10 metastasis model, even in the absence of visible metastases, as well as in the autochthonous Tg(Grm1)/Cyld−/− melanoma model. Importantly, we also observed an uneven distribution of disseminated melanoma cells amongst the five lobes of the murine lung, which varied considerably from animal to animal. Together, our findings demonstrate that the qRT-PCR-based detection of Trp-1 allows the quantification of low pulmonary metastatic burden in both transplantable and autochthonous murine melanoma models, and show that the analysis of lung metastasis in such models needs to take into account the stochastic distribution of metastatic lesions amongst the lung lobes.

2021 ◽  
Vol 10 (13) ◽  
pp. 2790
Author(s):  
Gue-Tae Moon ◽  
Ji-Hyun Lee ◽  
Sang-Hyun Jeong ◽  
Song-Wan Jin ◽  
Young-Min Park

NecroX-5 (NX-5) is a cell-permeable necrosis inhibitor with cytoprotective effects. Although it has been reported to inhibit lung and breast cancer metastasis by modulating migration, its therapeutic effect on melanoma metastasis is still unknown. In this study, we examined the anti-metastatic effect of NX-5 on melanoma cell lines and its related therapeutic mechanism. The anti-metastatic effect of NX-5 on melanoma cell lines was determined using a transwell migration assay. We performed a quantitative real-time polymerase chain reaction and western blot analysis to measure changes in the expression of mRNA and protein, respectively, for major mediators of Rho-family GTPases after NX-5 treatment in melanoma cells. In addition, after constructing the 3D melanoma model, the expression of Rho-family GTPases was measured by immunohistochemistry. NX-5 (10 μM and 20 μM) treatment significantly reduced melanoma cell migration (p < 0.01). Additionally, NX-5 (20 μM) treatment significantly decreased the mRNA and protein expression levels of Cdc42, Rac1, and RhoA in melanoma cells compared with the untreated group (p < 0.001 and p < 0.05, respectively). Immunohistochemistry for our 3D melanoma model showed that Cdc42, Rac1, and RhoA were constitutively expressed in the nuclei of melanoma cells of the untreated group, and NX-5 treatment decreased their expression. These results demonstrate that NX-5 can suppress melanoma metastasis by reducing the expression of Rho-family GTPases.


Author(s):  
Oscar Maiques ◽  
Bruce Fanshawe ◽  
Eva Crosas-Molist ◽  
Irene Rodriguez-Hernandez ◽  
Alessia Volpe ◽  
...  

Abstract Background Metastasis is a hallmark of cancer and responsible for most cancer deaths. Migrastatics were defined as drugs interfering with all modes of cancer cell invasion and thus cancers’ ability to metastasise. First anti-metastatic treatments have recently been approved. Methods We used bioinformatic analyses of publicly available melanoma databases. Experimentally, we performed in vitro target validation (including 2.5D cell morphology analysis and mass spectrometric analysis of RhoA binding partners), developed a new traceable spontaneously metastasising murine melanoma model for in vivo validation, and employed histology (haematoxylin/eosin and phospho-myosin II staining) to confirm drug action in harvested tumour tissues. Results Unbiased and targeted bioinformatic analyses identified the Rho kinase (ROCK)-myosin II pathway and its various components as potentially relevant targets in melanoma. In vitro validation demonstrated redundancy of several RhoGEFs upstream of RhoA and confirmed ROCK as a druggable target downstream of RhoA. The anti-metastatic effects of two ROCK inhibitors were demonstrated through in vivo melanoma metastasis tracking and inhibitor effects also confirmed ex vivo by digital pathology. Conclusions We proposed a migrastatic drug development pipeline. As part of the pipeline, we provide a new traceable spontaneous melanoma metastasis model for in vivo quantification of metastasis and anti-metastatic effects by non-invasive imaging.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 131
Author(s):  
Aira Matsugaki ◽  
Yumi Kimura ◽  
Ryota Watanabe ◽  
Fumihito Nakamura ◽  
Ryo Takehana ◽  
...  

Malignant melanoma favors spreading to bone, resulting in a weakened bone with a high fracture risk. Here, we revealed the disorganized alignment of apatite crystals in the bone matrix associated with the homing of cancer cells by developing an artificially controlled ex vivo melanoma bone metastasis model. The ex vivo metastasis model reflects the progressive melanoma cell activation in vivo, resulting in decreased bone mineral density and expression of MMP1-positive cells. Moreover, less organized intercellular connections were observed in the neighboring osteoblasts in metastasized bone, indicating the abnormal and randomized organization of bone matrix secreted by disconnected osteoblasts. Our study revealed that the deteriorated microstructure associated with disorganized osteoblast arrangement was a determinant of malignant melanoma-related bone dysfunction.


2015 ◽  
Vol 32 (8) ◽  
pp. 1170-1182 ◽  
Author(s):  
A. AlQathama ◽  
J. M. Prieto

Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. We here systematically and critically survey more than 30 natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and chart the mechanisms of action for this underexploited property.


Oncotarget ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 2966-2980 ◽  
Author(s):  
Animesh Bhattacharya ◽  
Ulf Schmitz ◽  
Yvonne Raatz ◽  
Madeleine Schönherr ◽  
Tina Kottek ◽  
...  

2006 ◽  
Vol 6 (3) ◽  
pp. 154
Author(s):  
Myoung Joo Kim ◽  
Hye Jin Shon ◽  
Soyoung Baek ◽  
Kang Eun Lee ◽  
Young-Joon Lee ◽  
...  

2016 ◽  
Vol 60 (1) ◽  
pp. 25-30
Author(s):  
Ernest Iakovlev ◽  
Zeina Ghorab ◽  
Hatem Krema ◽  
Vladimir Iakovlev ◽  
Peter Kertes ◽  
...  

Objective: The differential diagnosis between retinal detachment and melanoma metastatic to the vitreous can be challenging, both clinically and cytologically. We demonstrate the diagnostic features and pitfalls of the cytological assessment. Study Design: A case of a metastatic melanoma to the vitreous is compared to a case of retinal detachment initially suspected as melanoma metastasis. Case 1 was a 54-year-old patient with a vague history of pigmented lesions 20 years previously and a current presentation of a visual defect. Case 2 was a 68-year-old patient with a history of melanoma and a presentation of floaters and flashing lights. Results: The vitreous fluid of case 1 contained atypical, pigment-laden cells positive for HMB-45 and assessed as melanoma. On enucleation, a melanoma metastatic to the vitreous was diagnosed. The vitreous fluid of case 2 revealed atypical cells containing pigment granules. The cells were negative for melanocytic markers, while the granules stained positive for melanin. Macrophage marker CD163 was positive in all cells. The interpretation was one of macrophages reactive to the retinal detachment. Conclusion: Melanin-laden macrophages can mimic melanoma cells. This needs to be considered in the differential diagnosis. Additional stains can help the distinction.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e19015-e19015
Author(s):  
Amr M. Morsi ◽  
Avital Gazial-Sovran ◽  
Hana Baig ◽  
Robert S. Kerbel ◽  
John Golfinos ◽  
...  

e19015 Background: 75% of patients with metastatic melanoma develop brain metastases (B-mets). Such patients show dismal prognosis with a median survival of < 6 months. Scarcity of clinically relevant in vivo models has hindered melanoma B-met studies. We compared the in vivo dissemination upon ultrasound (u/s) guided intracardiac injection of B16F10 cells to 131/4-5B1 (hereafter 5B1), a WM239A subclone with enhanced brain tropism. We also implemented an ex vivo MRI protocol as a high throughput three dimensional approach for characterizing B-mets penetrance and growth. Methods: B16-F10 or 5B1 melanoma cells were injected in C57BL/6J mice (n=40) or athymic/nude mice (n=40) respectively using u/s-guided intracardiac injection. Upon weight loss, mice were euthanized, and heads prepared for ex vivo imaging. All µMRI experiments were performed with a 7T Bruker Avance II console. The protocol consisted of (110-mm)3 isotropic T1-, T2- and T2*-weighted sequences. Results: Our ex vivo MRI recapitulates the clinical radiological T1 and T2 brightening as well as susceptibility-induced T2* darkening effect of melanoma. The B16F10 model revealed exclusive ventricular and leptomeningeal spread while the 5B1 model showed parenchymal lesions. In addition, 90% of the 5B1 mice with brain tumors showed multiple lesions (3-16) vs. 18% in the B16F10 model (1- 3). Finally, 3D volume studies revealed a higher B-met penetrance (68% vs. 18%), delayed onset of tumor detection (earliest-day 27 vs. day 15) post-injection and a slower growth rate of 5B1 brain metastases compared to B16F10 tumors. Conclusions: Our results suggest that u/s-guided intracardiac injection of melanoma cells is an optimal method to capture the cells’ spontaneous dissemination pattern (or site-specific tropism) and that the 5B1 model is a more clinically relevant model of melanoma B-met for preclinical studies.


2020 ◽  
Author(s):  
Yumei Li ◽  
Bifei Li ◽  
Fan Chen ◽  
Weiyu Shen ◽  
Vladimir L. Katanaev ◽  
...  

Abstract Background Metastasis is the leading cause of melanoma mortality. Current therapies are rarely curative for metastatic melanoma, revealing the urgent need to identify more effective preventive and therapeutic targets. This study aimed to screen for the key core genes and molecular mechanisms related to the metastasis of melanoma. Methods Gene expression profile, GSE8401 including 31 primary melanoma and 52 metastatic melanoma clinical samples, was downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between metastatic melanoma and primary melanoma were screened using GEO2R. Assays of gene ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and protein-protein interaction (PPI) were performed to visualize these DEGs through Database for Annotation, Visualization and Integrated Discovery (DAVID) software and Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with Molecular Complex Detection (MCODE) plug-in tools. Top 10 genes with high degree were defined as hub genes. Furthermore, paired post-metastatic melanoma cells and pre-metastatic melanoma cells were established by experimental mouse model of melanoma metastasis to verify the expression of these hub genes. Results 424 DEGs between the metastatic melanoma and primary melanoma were screened, including 60 upregulated genes enriched in ECM-receptor interaction and progesterone-mediated oocyte maturation and 364 downregulated genes enriched in amoebiasis, melanogenesis, and ECM-receptor interaction. CDH1, EGFR, KRT5, COL17A1, KRT14, IVL, DSP, DSG1, FLG and CDK1 were defined as the hub genes. . In addition, paired post-metastatic melanoma cells (A375M) and pre-metastatic melanoma cells (A375) were established and qRT-PCR analysis confirmed the expression of the hub genes during melanoma metastasis. Conclusion This bioinformatic study has provided a deeper understanding of the molecular mechanisms of melanoma metastasis. KRT5, IVL and COL17A1 have emerged as possible biomarkers and therapeutic targets in metastasis of melanoma.


Sign in / Sign up

Export Citation Format

Share Document