scholarly journals Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment

2019 ◽  
Vol 9 (1) ◽  
pp. 84 ◽  
Author(s):  
Raluca Ioana Teleanu ◽  
Cristina Chircov ◽  
Alexandru Mihai Grumezescu ◽  
Daniel Mihai Teleanu

Angiogenesis is the process through which novel blood vessels are formed from pre-existing ones and it is involved in both physiological and pathological processes of the body. Furthermore, tumor angiogenesis is a crucial factor associated with tumor growth, progression, and metastasis. In this manner, there has been a great interest in the development of anti-angiogenesis strategies that could inhibit tumor vascularization. Conventional approaches comprise the administration of anti-angiogenic drugs that target and block the activity of proangiogenic factors. However, as their efficacy is still a matter of debate, novel strategies have been focusing on combining anti-angiogenic agents with chemotherapy or immunotherapy. Moreover, nanotechnology has also been investigated for the potential of nanomaterials to target and release anti-angiogenic drugs at specific sites. The aim of this paper is to review the mechanisms involved in angiogenesis and tumor vascularization and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.

2020 ◽  
Vol 14 (2) ◽  
pp. 126-144
Author(s):  
Ankita Gupta ◽  
Swatantra Singh Kushwaha ◽  
Amit Mishra

Background: Cancer is a condition in which some cells in the body grow uncontrollably and can also spread in other parts of the body. Among males, oral and lung cancers account for 25 % cancer deaths, while in females, breast and oral cancers cause 25% death. Breast and cervical cancers are the underlying cause of the high mortality rate among women. Owing to limitations of conventional cancer therapy like low drug specificity, less solubility, multidrug resistance, poor access to tumor cells and low bioavailability development of environmentally sensitive and target specific nanocarriers are imperative. Objective: The objective of this study is to review advancements made in techniques to synthesize Mesoporous Silica Nanoparticles (MSN’s) as well as strategies to functionalize its silanol group for site-specific drug release in the tumor environment and to review recent patents published regarding it. To describe rationale for selection of MSN’s for cancer theranostics amidst other nanocarriers developed. Methods: In the first section of this review, the physical and chemical properties of MSNs making it an ideal delivery system for cancer therapy and diagnostics are discussed. In the next section, various techniques involved in synthesizing and loading MSNs, including the influence of basic components of MSNs and reaction conditions on its properties are reviewed. Then the wide application of MSNs and various exogenous and endogenous stimuli harnessed for site-specific delivery of cargo and recent patents on modifying environmental conditions for large scale synthesis of MSNs and its active targeting for cancer treatment and bioimaging are discussed. Results: Physico-chemical properties and synthetic protocols of MSNs justifying them to be a promising nanovector to overcome the ill effects of traditional chemotherapy. The superlative attributes of MSNs including, tunable size, morphology, high load volume, stability, ease of modifying external and internal surface leverage applications in various dimensions of therapeutics, diagnostics, and combinatorial drug delivery. MSNs surface functionalization can be harnessed for passive and active targeting by either coating the surface with polymers or attaching various ligands. Conclusion: An ideal nano-carrier must have high loading efficiency, easily detectable, and must have stimuli's sensitive, site-specific drug release. The patent study explores new dimensions on MSNs synthesis by claiming new cost-effective templates and silica source, a more safe environment for synthesis, reducing synthesis steps, duration of reaction, effective loading of low solubility drugs by magnetized nanocarriers, pathogen-specific release and development of novel photoluminescent rechargeable MSNs under mild conditions. It’s a challenging task for researchers to successfully translate their prototypes to industries and make it feasible for commercialization. We can further work on excellent targeting concepts and architecture of MSNs for the increased opportunity in cancer theranostics.


2021 ◽  
Vol 28 ◽  
Author(s):  
Zhenjie Wang ◽  
Longguang Tang ◽  
Qingchun Mu ◽  
Siyao Che ◽  
Yongbing Sun ◽  
...  

: Cancer is composed of a serious of uncontrollably c ells, which finally form tumors to negatively impact the functions of the body and induce other serious diseases, even lead people to death. During the last decades, scientists devote great effort to study cancer, however there are no effective diagnosis and treatments. Nanomaterials have attracted great attention in biomedical field in recent years, which have been widely used as optical imaging probes and delivery systems for cancer therapy. Among the numerous nanomaterials, polymeric nanoparticles occupy a prominent position because of their tunable micro-size, multifunctional surface, prominent biocompatibility and high drug-carrying capacity. These significant advantages endow them over the traditional nanomaterials and become a potential therapy for cancer. In this review, we focus on the applications of polymeric nanoparticles in cancer theranostics, especially as the drug delivery systems for cancer treatment. This review provides an overview of the advancement of synthesis, application of polymeric nanoparticles-based drug delivery systems and highlights the evaluation for cancer therapy.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Foad Rommasi ◽  
Neda Esfandiari

AbstractThe increasing prevalence of cancer, a disease in which rapid and uncontrollable cell growth causes complication and tissue dysfunction, is one of the serious and tense concerns of scientists and physicians. Nowadays, cancer diagnosis and especially its effective treatment have been considered as one of the biggest challenges in health and medicine in the last century. Despite significant advances in drug discovery and delivery, their many adverse effects and inadequate specificity and sensitivity, which usually cause damage to healthy tissues and organs, have been great barriers in using them. Limitation in the duration and amount of these therapeutic agents’ administration is also challenging. On the other hand, the incidence of tumor cells that are resistant to typical methods of cancer treatment, such as chemotherapy and radiotherapy, highlights the intense need for innovation, improvement, and development in antitumor drug properties. Liposomes have been suggested as a suitable candidate for drug delivery and cancer treatment in nanomedicine due to their ability to store drugs with different physical and chemical characteristics. Moreover, the high flexibility and potential of liposome structure for chemical modification by conjugating various polymers, ligands, and molecules is a significant pro for liposomes not only to enhance their pharmacological merits but also to improve the effectiveness of anticancer drugs. Liposomes can increase the sensitivity, specificity, and durability of these anti-malignant cell agents in the body and provide remarkable benefits to be applied in nanomedicines. We reviewed the discovery and development of liposomes focusing on their clinical applications to treat diverse sorts of cancers and diseases. How the properties of liposomal drugs can be improved and their opportunity and challenges for cancer therapy were also considered and discussed. Graphic abstract


2010 ◽  
Vol 48 (08) ◽  
Author(s):  
N Azoitei ◽  
GV Pusapati ◽  
A Kleger ◽  
C Brunner ◽  
F Genze ◽  
...  

2018 ◽  
Vol 6 (9) ◽  
Author(s):  
DR.MATHEW GEORGE ◽  
DR.LINCY JOSEPH ◽  
MRS.DEEPTHI MATHEW ◽  
ALISHA MARIA SHAJI ◽  
BIJI JOSEPH ◽  
...  

Blood pressure is the force of blood pushing against blood vessel walls as the heart pumps out blood, and high blood pressure, also called hypertension, is an increase in the amount of force that blood places on blood vessels as it moves through the body. Factors that can increase this force include higher blood volume due to extra fluid in the blood and blood vessels that are narrow, stiff, or clogged(1). High blood pressure can damage blood vessels in the kidneys, reducing their ability to work properly. When the force of blood flow is high, blood vessels stretch so blood flows more easily. Eventually, this stretching scars and weakens blood vessels throughout the body, including those in the kidneys.


2015 ◽  
Vol 4 (1) ◽  
pp. 4-18
Author(s):  
Lauren Rebecca Sklaroff

This state of the field essay examines recent trends in American Cultural History, focusing on music, race and ethnicity, material culture, and the body. Expanding on key themes in articles featured in the special issue of Cultural History, the essay draws linkages to other important literatures. The essay argues for more a more serious consideration of the products within popular culture, less as a reflection of social or economic trends, rather for their own historical significance. While the essay examines some classic texts, more emphasis is on work published within the last decade. Here, interdisciplinary methods are stressed, as are new research perspectives developing by non-western historians.


2018 ◽  
Vol 40 (4) ◽  
pp. 345
Author(s):  
Editorial Board

The studies by Prof. V. Shlyakhovenko are always on the front edge of the science. And nowadays he focuses on the search for the markers of tumor growth and monitoring of cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document