A Review on Recent Technologies and Patents on Silica Nanoparticles for Cancer Treatment and Diagnosis

2020 ◽  
Vol 14 (2) ◽  
pp. 126-144
Author(s):  
Ankita Gupta ◽  
Swatantra Singh Kushwaha ◽  
Amit Mishra

Background: Cancer is a condition in which some cells in the body grow uncontrollably and can also spread in other parts of the body. Among males, oral and lung cancers account for 25 % cancer deaths, while in females, breast and oral cancers cause 25% death. Breast and cervical cancers are the underlying cause of the high mortality rate among women. Owing to limitations of conventional cancer therapy like low drug specificity, less solubility, multidrug resistance, poor access to tumor cells and low bioavailability development of environmentally sensitive and target specific nanocarriers are imperative. Objective: The objective of this study is to review advancements made in techniques to synthesize Mesoporous Silica Nanoparticles (MSN’s) as well as strategies to functionalize its silanol group for site-specific drug release in the tumor environment and to review recent patents published regarding it. To describe rationale for selection of MSN’s for cancer theranostics amidst other nanocarriers developed. Methods: In the first section of this review, the physical and chemical properties of MSNs making it an ideal delivery system for cancer therapy and diagnostics are discussed. In the next section, various techniques involved in synthesizing and loading MSNs, including the influence of basic components of MSNs and reaction conditions on its properties are reviewed. Then the wide application of MSNs and various exogenous and endogenous stimuli harnessed for site-specific delivery of cargo and recent patents on modifying environmental conditions for large scale synthesis of MSNs and its active targeting for cancer treatment and bioimaging are discussed. Results: Physico-chemical properties and synthetic protocols of MSNs justifying them to be a promising nanovector to overcome the ill effects of traditional chemotherapy. The superlative attributes of MSNs including, tunable size, morphology, high load volume, stability, ease of modifying external and internal surface leverage applications in various dimensions of therapeutics, diagnostics, and combinatorial drug delivery. MSNs surface functionalization can be harnessed for passive and active targeting by either coating the surface with polymers or attaching various ligands. Conclusion: An ideal nano-carrier must have high loading efficiency, easily detectable, and must have stimuli's sensitive, site-specific drug release. The patent study explores new dimensions on MSNs synthesis by claiming new cost-effective templates and silica source, a more safe environment for synthesis, reducing synthesis steps, duration of reaction, effective loading of low solubility drugs by magnetized nanocarriers, pathogen-specific release and development of novel photoluminescent rechargeable MSNs under mild conditions. It’s a challenging task for researchers to successfully translate their prototypes to industries and make it feasible for commercialization. We can further work on excellent targeting concepts and architecture of MSNs for the increased opportunity in cancer theranostics.

Small ◽  
2021 ◽  
pp. 2100753
Author(s):  
Ya‐Xuan Zhu ◽  
Hao‐Ran Jia ◽  
Yuxin Guo ◽  
Xiaoyang Liu ◽  
Ningxuan Zhou ◽  
...  

Author(s):  
SHIKHA KESHARVANI ◽  
PANKAJ KUMAR JAISWAL ◽  
ALOK MUKERJEE ◽  
AMIT KUMAR SINGH

Objective: The main objective of this study was to develop and evaluate the eudragit and HPMC coated metformin hydrochloride floating microspheres, in which HPMC helps in floating and eudragit as a coating material for a site-specific drug release in a controlled manner and the active moiety metformin used as anti-hyperglycemic agent. Methods: The floating microsphere was prepared by the solvent evaporation method incorporating metformin as a model drug. The prepared floating microsphere were characterized for particle size, %yield, drug loading and entrapment efficiency, compatibility study, %buoyancy, surface morphology and In vitro drug release and release kinetics. Results: The result metformin loaded floating microsphere was successfully prepared and the particle size range from 397±23.22 to 595±15.82 µm, the entrapment efficiency range from 83.49±1.33 to 60.02±1.65% and drug loading capacity range from 14.3±0.54 to 13.31±0.47% and %buoyancy range from 85.67±0.58 to 80.67±1.15%. The FT-IR and X-RD analysis confirmed that no any interaction between drug and excipient, and surface morphology confirmed those particles are sphere. The floating microsphere show maximum 96% drug release in pH 0.1N HCL and follow the Korsmeyer peppas model of the super case-2 transport mechanism. Conclusion: These results suggest that metformin loaded floating microspheres could be retain in stomach for long time and give site specific drug release in controlled manner.


2008 ◽  
Vol 7 (5) ◽  
pp. 409-414 ◽  
Author(s):  
Gunnar Myhr

The primary objective of this analysis is to provide the theoretical framework for a novel multimodal cancer treatment system emphasizing the use of ultrasound as a synergistic drug release mechanism, real time monitoring by MRI of hyperthermic, pO2, and ultrasound induced released effects. The aim is to provide a cure for the 20% of cancer victims who will die of complications from local solid tumors. Adjuvant therapy usually refers to surgery preceding or following chemotherapy and/or ionizing radiation treatment to decrease the risk of recurrence, but the absolute benefit for survival obtained with adjuvant therapy compared to control is only approximately 6%. Tumor hypoxia represents a primary therapeutic concern, besides multi-drug resistance (MDR), because it can reduce the effectiveness of drugs and radiotherapy; well-oxygenated cells require one-third the dose of hypoxic cells to achieve a given level of cell killing. The era of systemic and indiscriminate chemotherapeutic drug delivery into both healthy and pathologic tissues is near an end. Targeted drug delivery using nanoparticles is emerging as the new vehicle, either as a single treatment option, as part of adjuvant procedures or as a component of a multimodal cancer treatment system. There are more than 100 nanosized liposomes or particles, and conjugated anticancer agents in various stages of preclinical and clinical development. Active targeting can be achieved by site-specific delivery or site-specific triggering. Ultrasound can be utilized as both a site triggering and synergistic mechanism in drug release. The process can be monitored using MRI by a physical process called cavitation. An analysis of low frequency ultrasound exposure in combination with liposomally encapsulated doxorubicin (Caelyx) on Balb/c nude mice inoculated with a WiDr (human colon cancer) tumor cell line provided tumor growth inhibition of 30–40%. Mild hyperthermia causes mean intratumor pO2 to increase by 25% and enhances tumor radiosensitization. Hyperthermia causes the extravasation of liposome nanoparticles in deep tumor regions. Ionizing radiation improves the distribution and uptake of drugs. Liposomally encapsulated drugs and ultrasound mediated hyperthermia have been proven to circumvent MDR effects. Hyperthermic effects and pO2 monitoring of bodily fluid have been performed by MRI. It is hypothesized that increased vascularization and subsequent increase in pO2 levels to hypoxic regions, and monitoring of drug release through cavitation, can facilitate optimized real time concomitant or sequential treatments of drug therapy, hyperthermia, ionizing radiation, etc., before or after surgery. An improved therapeutic index with the use of the outlined system seems probable.


2019 ◽  
Vol 7 (6) ◽  
pp. 2358-2371 ◽  
Author(s):  
Olga Kopach ◽  
Kayiu Zheng ◽  
Olga A. Sindeeva ◽  
Meiyu Gai ◽  
Gleb B. Sukhorukov ◽  
...  

Polyelectrolyte multilayer (PEM) microchambers can provide a versatile cargo delivery system enabling rapid, site-specific drug release on demand.


2020 ◽  
Vol 11 (12) ◽  
pp. 3268-3280 ◽  
Author(s):  
Gayathri R. Ediriweera ◽  
Joshua D. Simpson ◽  
Adrian V. Fuchs ◽  
Taracad K. Venkatachalam ◽  
Matthias Van De Walle ◽  
...  

There remain several key challenges to existing therapeutic systems for cancer therapy, such as quantitatively determining the true, tissue-specific drug release profile in vivo, as well as reducing side-effects for an increased standard of care.


1986 ◽  
Vol 15 (4) ◽  
pp. 197-202 ◽  
Author(s):  
E Tomlinson

Site-specific drug carriers are required to exclusively deliver drug molecules to difficult targets within the body. They should do so in a form which protects the drug and host from one another. This contribution reviews the reasons for drug targeting, and describes some of the features required of two types of carrier system, i.e., particulates and soluble (bio)conjugates.


Nanoscale ◽  
2015 ◽  
Vol 7 (14) ◽  
pp. 6304-6310 ◽  
Author(s):  
Yuxia Tang ◽  
Hao Hu ◽  
Molly Gu Zhang ◽  
Jibin Song ◽  
Liming Nie ◽  
...  

A photoresponsive drug delivery system was developed for light-mediated drug release and aptamer-targeted cancer therapy.


2014 ◽  
Vol 50 (56) ◽  
pp. 7440-7443 ◽  
Author(s):  
Laura Gallego-Yerga ◽  
Michela Lomazzi ◽  
Francesco Sansone ◽  
Carmen Ortiz Mellet ◽  
Alessandro Casnati ◽  
...  

Calixarene–cyclodextrin heterodimers self-assemble in water into core–shell nanoparticles that can be decorated with glycoligands for site-specific drug delivery.


Sign in / Sign up

Export Citation Format

Share Document