Engineered polymer nanoplatforms for targeted tumor cells and controlled release cargos to enhance cancer treatment

2021 ◽  
Vol 28 ◽  
Author(s):  
Zhenjie Wang ◽  
Longguang Tang ◽  
Qingchun Mu ◽  
Siyao Che ◽  
Yongbing Sun ◽  
...  

: Cancer is composed of a serious of uncontrollably c ells, which finally form tumors to negatively impact the functions of the body and induce other serious diseases, even lead people to death. During the last decades, scientists devote great effort to study cancer, however there are no effective diagnosis and treatments. Nanomaterials have attracted great attention in biomedical field in recent years, which have been widely used as optical imaging probes and delivery systems for cancer therapy. Among the numerous nanomaterials, polymeric nanoparticles occupy a prominent position because of their tunable micro-size, multifunctional surface, prominent biocompatibility and high drug-carrying capacity. These significant advantages endow them over the traditional nanomaterials and become a potential therapy for cancer. In this review, we focus on the applications of polymeric nanoparticles in cancer theranostics, especially as the drug delivery systems for cancer treatment. This review provides an overview of the advancement of synthesis, application of polymeric nanoparticles-based drug delivery systems and highlights the evaluation for cancer therapy.

2020 ◽  
Vol 17 ◽  
Author(s):  
Ozge Esim ◽  
Canan Hascicek

: Currently, despite many active compounds have been introduced to the treatment, cancer remains one of the most vital causes of mortality and reduced quality of life. Conventional cancer treatments may have undesirable consequences due to the continuously differentiating, dynamic and heterogeneous nature of cancer. Recent advances in the field of cancer treatment have promoted the development of several novel nanoformulations. Among them, the lipid coated nanosized drug delivery systems have gained an increasing attention by the researchers in this field owing to the attractive properties such as high stability and biocompatibility, prolonged circulation time, high drug loading capacity and superior in vivo efficacy. They possess the advantages of both the liposomes and polymeric nanoparticles which makes them a chosen one in the field of drug delivery and targeting. Core-shell type lipid-coated nanoparticle systems, which provide the most prominent advantages of both liposomes such as biocompatibility and polymeric/inorganic nanoparticles such as mechanic properties, offer a new approach to cancer treatment. This review discusses design and production procedures used to prepare lipid-coated nanoparticle drug delivery systems, their advantages and multifunctional role in cancer therapy and diagnosis, as well as the applications they have been used in.


2020 ◽  
Vol 26 (42) ◽  
pp. 5488-5502 ◽  
Author(s):  
Yub Raj Neupane ◽  
Asiya Mahtab ◽  
Lubna Siddiqui ◽  
Archu Singh ◽  
Namrata Gautam ◽  
...  

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases. These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.


2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: In this review nanoscale based drug delivery systems particularly in relevance to the antiglaucoma drugs have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery, is an ideal option to target tumours and drug can be released at areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood–retinal barrier, corneal epithelium and the blood–aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us in understand the existing queries and evidence gaps and will pave way for effective design of novel ocular drug delivery systems


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2016 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Julia Modrejewski ◽  
Johanna-Gabriela Walter ◽  
Imme Kretschmer ◽  
Evren Kemal ◽  
Mark Green ◽  
...  

AbstractThe purpose of this study was to develop a model system for targeted drug delivery. This system should enable targeted drug release at a certain tissue in the body. In conventional drug delivery systems, drugs are often delivered unspecifically resulting in unwarranted adverse effects. To circumvent this problem, there is an increasing demand for the development of intelligent drug delivery systems allowing a tissue-specific mode of delivery. Within this study, nanoparticles consisting of two biocompatible polymers are used. Because of their small size, nanoparticles are well-suited for effective drug delivery. The small size affects their movement through cell and tissue barriers. Their cellular uptake is easier when compared to larger drug delivery systems. Paclitaxel was encapsulated into the nanoparticles as a model drug, and to achieve specific targeting an aptamer directed against lung cancer cells was coupled to the nanoparticles surface. Nanoparticles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), and nanotracking analysis (NTA). Also their surface charge was characterized from ζ-potential measurements. Their preparation was optimized and subsequently specificity of drug-loaded and aptamer-functionalized nanoparticles was investigated using lung cancer cells.


2021 ◽  
Vol 18 ◽  
Author(s):  
Panoraia I. Siafaka ◽  
Gökce Mutlu ◽  
Neslihan Üstündağ Okur

Background: Dementia and its related types such as Alzheimer’s disease, vascular dementia and mixed dementia belong to brain associated diseases, resulting in long-term progressive memory loss. These diseases are so severe that can affect a person's daily routine. Up to date, treatment of de- mentias is still an unmet challenge due to their complex pathophysiology and unavailable efficient pharmacological approaches. The use of nanotechnology based pharmaceutical products could possibly improve the management of dementia given that nanocarriers could more efficiently deliver drugs to the brain. Objective: The objective of this study is to provide the current nanotechnology based drug delivery systems for the treatment of various dementia types. In addition, the current diagnosis biomarkers for the mentioned dementia types along with their available pharmacological treatment are being dis- cussed. Method: An extensive review of the current nanosystems such as brain drug delivery systems against Alzheimer’s disease, vascular dementia and mixed dementia was performed. Moreover, nan- otheranostics as possible imaging markers for such dementias were also reported. Results: The field of nanotechnology is quite advantageous for targeting dementia given that nanoscale drug delivery systems easily penetrate the blood brain barrier and circulate in the body for prolonged time. These nanoformulations consist of polymeric nanoparticles, solid lipid nanoparticles, nanostruc- tured lipid carriers, microemulsions, nanoemulsions, and liquid crystals. The delivery of the nan- otherapeutics can be achieved via various administration routes such as transdermal, injectable, oral, and more importantly, through the intranasal route. Nonetheless, the nanocarriers are mostly limited to Alzheimer’s disease targeting; thus, nanocarriers for other types of dementia should be developed. Conclusion: To conclude, understanding the mechanism of neurodegeneration and reviewing the cur- rent drug delivery systems for Alzheimer’s disease and other dementia types are significant for medical and pharmaceutical society to produce efficient therapeutic choices and novel strategies based on mul- tifunctional and biocompatible nanocarriers, which can deliver the drug sufficiently into the brain.


Sign in / Sign up

Export Citation Format

Share Document