scholarly journals Durability of Composite Materials under Severe Temperature Conditions: Influence of Moisture Content and Prediction of Thermo-Mechanical Properties During a Fire

2019 ◽  
Vol 3 (2) ◽  
pp. 55 ◽  
Author(s):  
Juan Pablo Márquez Costa ◽  
Vincent Legrand ◽  
Sylvain Fréour

The main objective of the present study was to develop a fire thermal model able to predict the evolution of the temperature and decomposition gradient across a laminated composite structure when exposed to fire. The thermal response of composite laminate made of organic polymer matrix was investigated under severe temperature conditions as samples were exposed to high temperatures up to 750 °C. The highlight is that a behavior law for water is included in our thermo-mechanical model to estimate effects due to a moisture content field on the thermal response of composite laminates. In particular, porosity and gas pressure are strongly influenced by the presence of water in the material and modify the thermal behavior accordingly. This enabled us to propose a new approach that can be used for the prediction of hygro-thermo-chemico-mechanical post-combustion properties in a very large number of material and fire scenarios.

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 32
Author(s):  
Waleed H. Hassoon ◽  
Dariusz Dziki ◽  
Antoni Miś ◽  
Beata Biernacka

The objective of this study was to determine the grinding characteristics of wheat with a low moisture content. Two kinds of wheat—soft spelt wheat and hard Khorasan wheat—were dried at 45 °C to reduce the moisture content from 12% to 5% (wet basis). Air drying at 45 °C and storage in a climatic chamber (45 °C, 10% relative humidity) were the methods used for grain dehydration. The grinding process was carried out using a knife mill. After grinding, the particle size distribution, average particle size and grinding energy indices were determined. In addition, the dough mixing properties of wholemeal flour dough were studied using a farinograph. It was observed that decreasing the moisture content in wheat grains from 12% to 5% made the grinding process more effective. As a result, the average particle size of the ground material was decreased. This effect was found in both soft and hard wheat. Importantly, lowering the grain moisture led to about a twofold decrease in the required grinding energy. Moreover, the flour obtained from the dried grains showed higher water absorption and higher dough stability during mixing. However, the method of grain dehydration had little or no effect on the results of the grinding process or dough properties.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 421
Author(s):  
Binwei Zheng ◽  
Weiwei Zhang ◽  
Litao Guan ◽  
Jin Gu ◽  
Dengyun Tu ◽  
...  

A high strength recycled newspaper (NP)/high density polyethylene (HDPE) laminated composite was developed using NP laminas as reinforcement and HDPE film as matrix. Herein, NP fiber was modified with stearic acid (SA) to enhance the water resistance of the NP laminas and NP/HDPE composite. The effects of heat treatment and SA concentration on the water resistance and tensile property of NP and composite samples were investigated. The chemical structure of the NP was characterized with X-ray diffractometer, X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectra techniques. The surface and microstructure of the NP sheets were observed by scanning electron microscopy. An expected high-water resistance of NP sheets was achieved due to a chemical bonding that low surface energy SA were grafted onto the modified NP fibers. Results showed that the hydrophobicity of NP increased with increasing the stearic acid concentration. The water resistance of the composite laminates was depended on the hydrophobicity of the NP sheets. The lowest value of 2 h water absorption rate (3.3% ± 0.3%) and thickness swelling rate (2.2% ± 0.4%) of composite were obtained when the SA concentration was 0.15 M. In addition, the introduction of SA can not only enhance the water resistance of the composite laminates, but also reduce the loss of tensile strength in wet conditions, which shows potential in outdoor applications.


2006 ◽  
Vol 324-325 ◽  
pp. 43-46
Author(s):  
Yu Pu Ma ◽  
Xin Zhi Lin ◽  
Qing Fen Li ◽  
Zhen Li

When stress is high, delaminate damage can be induced by transverse cracks. A complete parabolic shear-lag damage model containing delamination induced by transverse cracks is therefore proposed and applied to predict the stiffness reduction by transverse cracking in cross-ply laminated composite materials. The predictions of the complete parabolic shear-lag analysis model, the incomplete parabolic shear-lag analysis model, and the complete parabolic shear-lag damage model containing delamination proposed in this paper have been compared. Results show that the young’s modulus reduction values obtained by our analysis model are better agreement with the experimental ones than other models.


2014 ◽  
Vol 680 ◽  
pp. 467-473
Author(s):  
Viktor Pukhkal ◽  
Darko Stanojevic ◽  
Vera Murgul ◽  
Nikolay Vatin

Transition to a new approach related to use of facades and roofs entirely made of glass in pavilions car showrooms construction called for an additional analysis to evaluate an issue of how to ensure an interior climate. There was a need to have solutions generalized and systematized with the aim to ensure human comfort in pavilions with large glazed areas in facades and roofs. Exhibition pavilions car showrooms based on translucent structures were taken for consideration. General data concerning temperature conditions for the rooms and internal glazing surfaces of pavilions car showrooms based on translucent structures are stated herein. Pertinent information for glazing design is given with due account for winter maintenance conditions in regard to the pavilions car showrooms having significant areas of façade or roof glazing.


2018 ◽  
Vol 52 (24) ◽  
pp. 3381-3398 ◽  
Author(s):  
Oscar Castro ◽  
Kim Branner ◽  
Nikolay Dimitrov

A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life diagrams are developed which can efficiently estimate probabilistic ɛ-N curves at any load level and stress ratio. The probabilistic ɛ-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under both repeated block tests and spectral fatigue using the WISPER, WISPERX, and NEW WISPER load sequences for wind turbine blades.


2019 ◽  
Vol 161 (A4) ◽  

This study investigates and reviews prior research works on skew composite laminates. The equivalent single layer theories are explored and discussed. An exhaustive review on static and dynamic analysis of composite skew laminates is also presented. Subsequently, a nine node isoparametric plate bending element is used for free vibration analysis of laminated composite skew plate with central skew cut out. The effect of shear deformation is incorporated in the formulation considering first order shear deformation theory. Two types of mass lumping schemes are analysed to study the effect of rotary inertia. Certain numerical examples of plates having different skew angles, skew cut out sizes, boundary conditions, thickness ratios (h/a), aspect ratios (a/b), fiber orientations and number of layers are solved which will be useful for benchmarking of future studies.


2019 ◽  
Vol 79 (3) ◽  
pp. 501-509 ◽  
Author(s):  
Jin Zhang ◽  
Qing Hu ◽  
Jie Lu ◽  
Shuang Lin

Abstract The difficulty of residual sludge dehydration is the major problem in sewage treatment. The reduction of moisture content in sludge can reduce the sludge volume significantly and is conducive to the subsequent disposal of sludge. As an organic polymer flocculant, chitosan (CTS) is widely used in water and waste water treatment. In this study, CTS was used in sludge treatment to improve the sedimentation and dehydration properties of sludge. When treated with CTS, the moisture content of sludge cake decreased from 85.9% to 83.0%, the SV30 decreased to about 1/2, and the sludge volume reduced to 82.9%. Further analysis showed that the zeta potential (ζ-potential) of the sludge changed from negative value to positive value, and the D50 of the sludge was larger than that of the raw sludge. In addition, when the moisture content of the sludge cake was reduced to the lowest, the concentration of extracellular polymeric substances (EPS) and SCOD was the largest and the |ζ| decreased to the lowest. CTS improved the dehydration and sedimentation performance of sludge mainly by factors of electrical neutralization, adsorption bridging and dissolution of EPS.


2016 ◽  
Vol 78 (9-2) ◽  
Author(s):  
Hasan Mohd Faizal ◽  
M. Shafiq M. Nazri ◽  
Md. Mizanur Rahman ◽  
S. Syahrullail ◽  
Z. A. Latiff

High global energy demand scenario has driven towards transformation from sole dependence on fossil fuels to utilization of inexhaustible renewable energy sources such as hydro, biomass, solar and wind. Renewable energy sources are abundant in Malaysia, especially palm biomass residues that are produced during the oil extraction process of fresh fruit bunch. Therefore, it is inevitable to harness these bioenergy sources, in order to prevent waste accumulation at adjacent to palm mills. Briquetting of palm biomass such as empty fruit bunch (EFB) with polyethylene (PE) plastics waste addition is expected not only could maximize the utilization of energy resources, but also could become as a potential solution for residue and municipal plastics waste disposal. In the present study, the physical and combustion properties of palm biomass briquettes that contain novel mixture of pulverized EFB and PE plastics waste were investigated experimentally. The briquettes were produced with different mixing ratio of EFB and PE plastics (weight ratios of 95:5, 90:10 and 85:15), under various heating temperatures (130-190 ) and at constant compaction pressure of 7 MPa. Based on the results, it can be said that heating temperature plays a significant role in affecting physical properties such as relaxed density and compressive strength. The values of relaxed density and compressive strength are within the range of 1100 to 1300 kg/m3 and 0.8 to 1.2 MPa, respectively. Meanwhile, mixing ratio does affect relaxed density and gross calorific value. All values of gross calorific (17900 to 21000 kJ/kg) and moisture content (7% to 9%) are found to fulfill the requirement for commercialization as stated by DIN51731 (gross calorific value>17500 kJ/kg and moisture content<10%). Even though the values of ash content (3% to 4%) exceed the limitation as stated by the standard (<0.7%), it is still considered very competitive if compared to the commonly used local briquette that contains mesocarp fibre and shell (5.8%). Finally, it can be concluded that the best quality of briquette can be achieved when highest composition of PE plastics (weight percentage of 15%) is used and the briquetting process is performed at the highest temperature (190 ).  


2016 ◽  
Vol 694 ◽  
pp. 8-12 ◽  
Author(s):  
M.Y. Yuhazri ◽  
G.C.H. Nilson ◽  
Haeryip Sihombing ◽  
Mohd Edeerozey Abd Manaf

The aim of this study is to evaluate the mechanical properties and study the failure of laminated glass reinforced composite coated with gelcoat of different thickness. Firstly, the gelcoat was applied to the mould using brush and subsequently, glass fiber reinforced composite laminates were fabricated on it using vacuum bagging technique. The mechanical properties of the composites various were tested by using tensile and three-point flexural tests. The fracture behaviour of different gelcoat thickness was observed using scanning electron microscope (SEM) to determine the failure behaviour that occurred. The flexural test was performed in two ways, i.e., gelcoat layer facing top and facing down. For both flexural tests, composite coated with 0.30 mm thick of gelcoat shows the highest mechanical strength. Tensile test is useful to investigate the interfacial bonding in between gelcoat and laminate composite. The composite coated with 0.40 mm of gelcoat showed the highest tensile strength, an increase of 38 % compared to the uncoated composite. It was observed that an increase in gelcoat thickness increased the brittleness of the laminated composite. From the failure analysis, failures were caused by the delamination of matrix between the plies, while the gelcoat was still strongly bonded with composite laminate.


Sign in / Sign up

Export Citation Format

Share Document