scholarly journals Sandwich Panels Bond with Advanced Adhesive Films

2019 ◽  
Vol 3 (3) ◽  
pp. 79 ◽  
Author(s):  
Pereira ◽  
Fernandes

Sandwich structures present several advantages, being used in many industries such as the aeronautical industry. In this study, an automated laminating line is employed to manufacture sandwich panels for boards. This work focus on an innovative solution, employing an advanced adhesive film to increase the bonding strength of sandwich structures used for this application. This was used to bond ceramic steel sheets to honeycomb‐cored structures, creating an innovative solution for the board industry. Bending tests were carried to evaluate the performance of the new sandwich solutions and to compare it against a typical one available on the market.

2012 ◽  
Author(s):  
F. J. Avellaneda ◽  
V. Miguel ◽  
J. Coello ◽  
A. Martínez ◽  
A. Calatayud
Keyword(s):  

2010 ◽  
Vol 654-656 ◽  
pp. 1928-1931
Author(s):  
Jun Zhang ◽  
Yong Cheng Lin ◽  
Xin Li Wei ◽  
Liu Gang Huang

A modified cohesive zone interface model with a damage factor was proposed to describe the effects of the thermal cycle and humidity aging on the strengths of adhesive joints. The damage factor can not only change the cohesive zone bonding strength but also affect the energies of separation. The modified cohesive zone interfacial model, as a user subroutine, is developed and implemented in ABAQUS to simulate the 90° peeling process of the specimens, which were bonded by anisotropic conducive adhesive film (ACF) and subjected to the cycle and humidity aging tests. The numerical simulated results well agree with experimental results, which confirmed the validity of the new model.


2001 ◽  
Author(s):  
Terry Hause ◽  
Liviu Librescu

Abstract This paper addresses the problem of the dynamic response in bending of flat sandwich panels exposed to time-dependent external pulses. The study is carried out in the context of an advanced model of sandwich structures that is characterized by anisotropic laminated face sheets and an orthotropic core layer. A detailed analysis of the influence of a large number of parameters associated with the particular type of pressure pulses, panel geometry, fiber orientation in the face sheets and, presence of tensile uni/biaxial edge loads is accomplished, and pertinent conclusions are outlined.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3198 ◽  
Author(s):  
Angang Wei ◽  
Baohua Chang ◽  
Boce Xue ◽  
Guodong Peng ◽  
Dong Du ◽  
...  

Web-core sandwich panels are a typical lightweight structure utilized in a variety of fields, such as naval, aviation, aerospace, etc. Welding is considered as an effective process to join the face panel to the core panel from the face panel side. However, it is difficult to locate the joint position (i.e., the position of core panel) due to the shielding of the face panel. This paper studies a weld position detection method based on X-ray from the face panel side for aluminum web-core sandwich panels used in aviation and naval structures. First, an experimental system was designed for weld position detection, able to quickly acquire the X-ray intensity signal backscattered by the specimen. An effective signal processing method was developed to accurately extract the characteristic value of X-ray intensity signals representing the center of the joint. Secondly, an analytical model was established to calculate and optimize the detection parameters required for detection of the weld position of a given specimen by analyzing the relationship between the backscattered X-ray intensity signal detected by the detector and the parameters of the detection system and specimen during the detection process. Finally, several experiments were carried out on a 6061 aluminum alloy specimen with a thickness of 3 mm. The experimental results demonstrate that the maximum absolute error of the detection was 0.340 mm, which is sufficiently accurate for locating the position of the joint. This paper aims to provide the technical basis for the automatic tracking of weld joints from the face panel side, required for the high-reliability manufacturing of curved sandwich structures.


Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1152
Author(s):  
Aidan Reilly ◽  
Richard O'Hegarty ◽  
Oliver Kinnane

This paper presents work developing thin precast concrete sandwich panels for recladding and overcladding applications. These panels are designed for the retrofit of precast concrete structures where the underlying frame is structurally sound. Structural and thermal testing has been carried out to validate the performance of the panels. The panels are designed to have thermal performance better than current national standards, and this has been verified through hot-box testing of components and small-scale panels. Structural performance of the panels has been tested with 3 point bending tests on full-scale panels. Work is in progress towards demonstration of the panels on an occupied building in the UK.


2013 ◽  
Vol 405-408 ◽  
pp. 2810-2814
Author(s):  
Chang Liang Li ◽  
Da Zhi Jiang ◽  
Jing Cheng Zeng ◽  
Su Li Xing

Dynamic response and damage mechanism of two-core sandwich panels with foam and honeycomb cores and glass fiber/epoxy composite sheets under low-velocity transverse impact are investigated. The emphasis is focused on the contact force response and crash mechanism of the two-core sandwich panels. Effects of configurations, impact energy levels and types of the cores on the dynamic response are investigated. A modified drop-test experiment is carried out to obtain contact force history of the two-core sandwich structures under different impact energies. The experimental results show that the 10:10 configurations for both honeycomb and foam core sandwich structures under lower impact energy absorb more impact energy than the other two structures. However, under higher impact energy, the honeycomb core sandwich structures of 15:5 configuration absorbs a little more impact energy than the other two, while for the foam core sandwich structures the 5:15 configuration shows a little better impact resistance. Results also show that when impact energy is low foam core sandwich structures do better in absorbing impact energy than the honeycomb ones.


Author(s):  
Dongjie Ai ◽  
Yuansheng Cheng ◽  
Jun Liu ◽  
Jianhu Liu ◽  
Haikun Wang ◽  
...  

Sandwich panel structures, which consist of two thin faces and low relative density cores, can significantly mitigate the possibilities of panel fractures. In the present paper, numerical simulations are conducted to study the deformation and fracture modes of sandwich structures under near-field underwater blasts and contact underwater blasts. Two different core materials are employed, namely aluminum foam and PVC foam. Main focus of this paper was placed to (i) study the failure mechanisms and energy absorption characteristics of sandwich structures in typical conditions, (ii) to demonstrate the benefits of such structures compared with solid plates of equal weight, and (iii) to obtain the properties of withstanding underwater explosion for single core material sandwich panels. In addition, the effects of panel thickness configuration and core height on deformation and energy absorption of the plates were explored. Results indicated that sandwich structures showed an effective reduction in the maximum panel deflection compared with a monolithic plate of same mass. The design parameters have great impacts on the results.


2019 ◽  
Vol 9 (2) ◽  
pp. 3955-3958
Author(s):  
T. Subhani

In this study, honeycomb sandwich structures were prepared and tested. Facesheets of sandwich structures were manufactured by carbon fiber epoxy matrix composites while Nomex® honeycomb was used as core material. An epoxy-based adhesive film was used to bond the composite facesheets with honeycomb core. Four different curing temperatures ranging from 100oC to 130oC were applied with curing times of 2h and 3h. Three-point bend test was performed to investigate the mechanical performance of honeycomb sandwich structures and thus optimize the curing parameters. It was revealed that the combination of a temperature of 110oC along with a curing time of 2h offered the optimum mechanical performance together with low damage in honeycomb core and facesheets.


2020 ◽  
Vol 172 ◽  
pp. 07007
Author(s):  
Gregor Vidmar

In order to calculate amount of interstitial condensation in a building envelope, water vapour resistance of each layer is of importance. Once having it, 1D calculation according to ISO 13788 with monthly average vapour pressures can be applied. In EN 14509 sandwich panels are considered to be impermeable for water vapour, thus (according to the standard) water vapour cannot enter from outside and condensate in the panels. But it is not always true for real sandwich panels, because joints between neighbouring panels can cause non-neglecting water vapour bridges. Although in measurements of linear water vapour transmittance of the joints (Ψv) stationary boundary vapour pressures can be applied, the measurements can be long lasting. We shortened time needed to get Ψv performing simulations in Delphin 6.0. We simulated panels and steel sheets with joints using constant boundary vapour pressures and compared the results with the results of measurements on the equivalent systems. In systems under consideration a sealant in built-in-state, located at a joint of a sandwich panel, is a compressed EPDM tube. It is impossible to directly measure its effective μ according to ISO 12572. In the paper we study to which precision it is possible to determine it using measurements and simulations. Once having effective μ of the sealant (if all other necessary material parameters available) one can simulate condensation in envelopes including sandwich panels in 2D according to EN 15026 using hourly climatic data. Another goal of the study was determination of differences in resulting Ψv values when varying narrowest part of the gap dGAP at the joint in the panels without any sealant. Results confirm significant sensibility of Ψv to variations of dGAP.


2022 ◽  
pp. 089270572110466
Author(s):  
Himan Khaledi ◽  
Yasser Rostamiyan

Present paper has experimentally and numerically investigated the mechanical behavior of composite sandwich panel with novel M-shaped lattice core subjected to three-point bending and compressive loads. For this purpose, a composite sandwich panel with M-shaped core made of carbon fiber has been fabricated in this experiment. In order to fabricate the sandwich panels, the vacuum assisted resin transfer molding (VARTM) has been used to achieve a laminate without any fault. Afterward, polyurethane foam with density of 80 kg/m3 has been injected into the core of the sandwich panel. Then, a unique design was presented to sandwich panel cores. The study of force-displacement curves obtained from sandwich panel compression and three-point bending tests, showed that an optimum mechanical strength with a considerable lightweight. It should be noted that the experimental data was compared to numerical simulation in ABAQUS software. According to the results, polyurethane foam has improved the flexural strength of sandwich panels by 14% while this improvement for compressive strength is equal to 23%. As well as, it turned out that numerical results are in good agreement with experimental ones and make it possible to use simulation instead of time-consuming experimental procedures for design and analysis.


Sign in / Sign up

Export Citation Format

Share Document