scholarly journals Hot Extrusion of ZnSb-Based Thermoelectric Materials; A Novel Approach for Scale-Up Production

2019 ◽  
Vol 3 (3) ◽  
pp. 58
Author(s):  
Mohsen K. Keshavarz ◽  
Chun-Wan Timothy Lo ◽  
Sylvain Turenne ◽  
Yurij Mozharivskyj ◽  
Nathaniel J. Quitoriano

Hot extrusion is employed to produce bulk ZnSb and Zn13Sb10 thermoelectric materials. The extrusion parameters are optimized to achieve high purity products with high density and acceptable mechanical strength for further fabrication processing. Microstructural analysis is performed to investigate the products. X-ray diffraction, energy dispersive X-ray spectroscopy, and differential scanning calorimetry show high stability of the ZnSb phase during the extrusion that lead to high purity products. However, the Zn13Sb10 compound decomposes during the extrusion, yielding a bulk sample consisting of several other phases. Hot extrusion shows a great potential for scaled up production of high quality ZnSb thermoelectric materials.

2012 ◽  
Vol 730-732 ◽  
pp. 925-930
Author(s):  
Daniela Nunes ◽  
Vanessa Livramento ◽  
Horácio Fernandes ◽  
Carlos Silva ◽  
Nobumitsu Shohoji ◽  
...  

Nanostructured copper-diamond composites can be tailored for thermal management applications at high temperature. A novel approach based on multiscale diamond dispersions is proposed for the production of this type of materials: a Cu-nDiamond composite produced by high-energy milling is used as a nanostructured matrix for further dispersion of micrometer sized diamond. The former offers strength and microstructural thermal stability while the latter provides high thermal conductivity. A series of Cu-nDiamond mixtures have been milled to define the minimum nanodiamond fraction suitable for matrix refinement and thermal stabilization. A refined matrix with homogenously dispersed nanoparticles could be obtained with 4 at.% nanodiamond for posterior mixture with mDiamond and subsequent consolidation. In order to define optimal processing parameters, consolidation by hot extrusion has been carried out for a Cu-nDiamond composite and, in parallel, for a mixture of pure copper and mDiamond. The materials produced were characterized by X-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.


1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


2019 ◽  
Vol 57 ◽  
pp. 17-30
Author(s):  
Christopher Narh ◽  
Charles Frimpong ◽  
Qu Fu Wei

In this research, unzipped sulfanilic acid inspired hydrophobic peptide tube was synthesis by increasing the polarity of sulfanilic acid through nucleophilic attachment of aniline which then provided two reactive sites at the S-terminus. These two sites were then attached with the N-terminal of valine and alanine respectively at an intensity of 1000-1600 of 11 2θ (°). Through π-π stacking at the side chains, the opened ended peptide was linearly arranged to form the unzipped tube. Fourier transform infrared spectroscopy (FTIR) confirm the amine bond formation whiles X-ray diffraction test results confirmed D-spacing 7.36 and 4.44 corresponding 2θ (°)12 and 19.97 respectively whiles the torsion angles (Ø2) conformations was between-150.5°and-169.2° and-2 between-129.0° and-150.6°. The Thermogravimetric analysis result showed an increase in the rigidity of the bond with an increasing intensity. Finally, Differential scanning calorimetry (DSC) test was carried out to confirm the crystallinity of the structure. Keywords: Sulfanilic acid, hydrophobic Peptide, Unzipped tubes, Nanomaterial


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 419
Author(s):  
Steven A. Ross ◽  
Andrew P. Hurt ◽  
Milan Antonijevic ◽  
Nicolaos Bouropoulos ◽  
Adam Ward ◽  
...  

The aim of the study was the manufacturing and scale-up of theophylline-nicotinamide (THL-NIC) pharmaceutical cocrystals processed by hot-melt extrusion (HME). The barrel temperature profile, feed rate and screw speed were found to be the critical processing parameters with a residence time of approximately 47 s for the scaled-up batches. Physicochemical characterization using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction of bulk and extruded materials revealed the formation of high purity cocrystals (98.6%). The quality of THL-NIC remained unchanged under accelerated stability conditions.


2012 ◽  
Vol 190 ◽  
pp. 351-354
Author(s):  
Samanta Tapas ◽  
Samuel Tempel ◽  
Igor Dubenko ◽  
V.I. Krylov ◽  
A.V. Tsvyashchenko ◽  
...  

The studies of X-ray diffraction, magnetization, magnetocaloric effect, and 57Fe Mössbauer spectra have been performed in a bulk sample of RhFe compound synthesized under high pressure. It have been found that RhFe has fcc-type of crystal structure at room temperature and, shows the first order magnetic transition from the antiferromagnetic-like to ferromagnetic state close to 338 K at 5T magnetic field. This type of behavior has been verified by differential scanning calorimetry, magnetization and Mössbauer techniques. The irreversible transition from antiferromagnetic to stable ferromagnetic state has been observed after heating of sample up to 573K.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Alessio Ausili ◽  
Inés Rodríguez-González ◽  
Alejandro Torrecillas ◽  
José A. Teruel ◽  
Juan C. Gómez-Fernández

The synthetic estrogen diethylstilbestrol (DES) is used to treat metastatic carcinomas and prostate cancer. We studied its interaction with membranes and its localization to understand its mechanism of action and side-effects. We used differential scanning calorimetry (DSC) showing that DES fluidized the membrane and has poor solubility in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) in the fluid state. Using small-angle X-ray diffraction (SAXD), it was observed that DES increased the thickness of the water layer between phospholipid membranes, indicating effects on the membrane surface. DSC, X-ray diffraction, and 31P-NMR spectroscopy were used to study the effect of DES on the Lα-to-HII phase transition, and it was observed that negative curvature of the membrane is promoted by DES, and this effect may be significant to understand its action on membrane enzymes. Using the 1H-NOESY-NMR-MAS technique, cross-relaxation rates for different protons of DES with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) protons were calculated, suggesting that the most likely location of DES in the membrane is with the main axis parallel to the surface and close to the first carbons of the fatty acyl chains of POPC. Molecular dynamics simulations were in close agreements with the experimental results regarding the location of DES in phospholipids bilayers.


Sign in / Sign up

Export Citation Format

Share Document