scholarly journals Wind-Load Response and Evacuation Efficiency Analysis of Marine Evacuation Inflatable Slide

2019 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Fankai Kong ◽  
Hengxu Liu ◽  
Binghan Wang ◽  
Huaqiu Ding ◽  
Zhen Jiang ◽  
...  

Flexible inflatable membrane structure has the characteristics of light weight, large span, and small stiffness, and it is very sensitive to wind load. Aiming at the dynamic response of marine evacuation inflatable slides under complex and changeable wind loads at sea, the response law of the inflatable slide under different wind directions, wind speeds, and internal pressure conditions is studied by using fluid–solid coupling theory. The most dangerous conditions of evacuation system installation and the ideal internal pressure of the inflatable slide meeting the stability requirements are deduced. The LS-DYNA module is used to simulate the inflation process of the slide. The evacuation sliding is rationally simplified. By changing the inflatable internal pressure of the slide, the variation law of displacement, deformation, and sliding speed of the slide is obtained, and the optimal inflation internal pressure satisfying the evacuation efficiency requirement is obtained. The results show that the inflow wind direction angle of 30° is the most dangerous condition for slideway installation, and the internal pressure of 4000 Pa is the ideal internal pressure to meet the double standards of stability and evacuation efficiency. The numerical results obtained are valuable for analyzing wind resistance of offshore inflatable membrane structures and their practical design and application in evacuation systems.

2020 ◽  
Vol 8 (8) ◽  
pp. 603
Author(s):  
Hua Huang ◽  
Yaoqiang Xian ◽  
Wei Zhang ◽  
Mengxue Guo ◽  
Kun Yang ◽  
...  

Lightweight cable–membrane structures can span large distances and undertake aesthetically pleasing shapes. They are widely used for roofs and modern structural canopies and in the aerospace industry for large on-board antenna reflectors that are to be deployed in space. This paper studies a wind-induced vibration under different cable stress relaxation conditions based on the wind load time-history to obtain the dynamic behavior of such a structure. Particularly, the focus is put upon its wind resistance in the event of stress relaxation. This research can provide an important reference for the design of wind resistance, damage assessment, and emergency maintenance for the spoke-wise cable–membrane structure (SCMS).


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao-Huan Tang ◽  
Ting Guo ◽  
Xiang-Yu Gao ◽  
Xiao-Long Wu ◽  
Xiao-Fang Xing ◽  
...  

AbstractExosomes are a subpopulation of the tumour microenvironment (TME) that transmit various biological molecules to promote intercellular communication. Exosomes are derived from nearly all types of cells and exist in all body fluids. Noncoding RNAs (ncRNAs) are among the most abundant contents in exosomes, and some ncRNAs with biological functions are specifically packaged into exosomes. Recent studies have revealed that exosome-derived ncRNAs play crucial roles in the tumorigenesis, progression and drug resistance of gastric cancer (GC). In addition, regulating the expression levels of exosomal ncRNAs can promote or suppress GC progression. Moreover, the membrane structures of exosomes protect ncRNAs from degradation by enzymes and other chemical substances, significantly increasing the stability of exosomal ncRNAs. Specific hallmarks within exosomes that can be used for exosome identification, and specific contents can be used to determine their origin. Therefore, exosomal ncRNAs are suitable for use as diagnostic and prognostic biomarkers or therapeutic targets. Regulating the biogenesis of exosomes and the expression levels of exosomal ncRNAs may represent a new way to block or eradicate GC. In this review, we summarized the origins and characteristics of exosomes and analysed the association between exosomal ncRNAs and GC development.


2016 ◽  
Vol 158 ◽  
pp. 122-138 ◽  
Author(s):  
M. Feyzollahzadeh ◽  
M.J. Mahmoodi ◽  
S.M. Yadavar-Nikravesh ◽  
J. Jamali

Author(s):  
Audrey Rizzo ◽  
Xavier Moreau ◽  
Alain Oustaloup ◽  
Vincent Hernette

In a vibration isolation context, fractional derivative can be used to design suspensions which allow to obtain similar performances in spite of parameters uncertainties. This paper presents the synthesis and the achievement of a new Hydractive CRONE suspension system. After the study of the different constraint in suspension in the first paper, the ideal transfer function of the hydractive CRONE suspension is created and simulated in different case. Then a method to determine the technological parameters is proposed. A parallel arrangement of dissipative and capacitive components and a gamma arrangement are compared. They lead to the same unusual performances: the stability degree robustness and the rapidity robustness.


2014 ◽  
Vol 986-987 ◽  
pp. 235-238
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

For the simulation of wind turbine, the wind speed is extremely important parameters and indicators to measure the output power of the unit is the wind load. Therefore, in the airflow dynamics and simulation of wind loads before establishing an accurate wind speed model is crucial. At present, the application for wind turbines COMSOL fan, fan blades and wind load simulation field, the extremely important wind speed model is not perfect, most of the research is confined to a single constant wind speed, wind speed virtually ignored the magnitude and direction of change, on changes over time and space at the same time is one of the few studies of wind, so find a way to accurately describe the range of wind speeds, and can be combined well with COMSOL method can greatly improve the aerodynamic performance of wind turbines the overall level of .


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2768
Author(s):  
Hui-Yu Liu ◽  
Ravi Kumar ◽  
Madoka Takai ◽  
Michael Hirtz

Biomimetic lipid membranes on solid supports have been used in a plethora of applications, including as biosensors, in research on membrane proteins or as interfaces in cell experiments. For many of these applications, structured lipid membranes, e.g., in the form of arrays with features of different functionality, are highly desired. The stability of these features on a given substrate during storage and in incubation steps is key, while at the same time the substrate ideally should also exhibit antifouling properties. Here, we describe the highly beneficial properties of a 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer for the stability of supported lipid membrane structures generated by dip-pen nanolithography with phospholipids (L-DPN). The MPC copolymer substrates allow for more stable and higher membrane stack structures in comparison to other hydrophilic substrates, like glass or silicon oxide surfaces. The structures remain highly stable under immersion in liquid and subsequent incubation and washing steps. This allows multiplexed functionalization of lipid arrays with antibodies via microchannel cantilever spotting (µCS), without the need of orthogonal binding tags for each antibody type. The combined properties of the MPC copolymer substrate demonstrate a great potential for lipid-based biomedical sensing and diagnostic platforms.


Author(s):  
J.L. Urrutia-Galicia ◽  
A.N. Sherbourne

The mathematical model of the stability analysis of circular cylindrical shells under arbitrary internal pressure is presented. The paper consists of a direct analysis of the equilibrium modes in the neighbourhood of the unperturbed principal equilibrium path. The final stability condition results in a completely symmetric differential operator which is then compared with current theories found in the literature.


1982 ◽  
Vol 37 (8) ◽  
pp. 848-858 ◽  
Author(s):  
D. Correa-Restrepo

Resistive ballooning modes in general three-dimensional configurations are studied on the basis of the equations of motion of resistive MHD. Assuming small, constant resistivity and perturbations localized transversally to the magnetic field, a stability criterion is derived in the form of a coupled system of two second-order differential equations. This criterion contains several limiting cases, in particular the ideal ballooning mode criterion and criteria for the stability of symmetric systems. Assuming small growth rates, analytical results are derived by multiple-length-scale expansion techniques. Instabilities are found, their growth rates scaling as fractional powers of the resistivity


2011 ◽  
Vol 255-260 ◽  
pp. 921-925 ◽  
Author(s):  
Hai Jun Wu ◽  
Yu Qiang Kang ◽  
Lei Zhang

Analyzing the basic theory of stability, with a high pier of large span prestressed concrete continuous bridge as the example, the stability was analyzed when constructing, considering wind load, hanging basket, pier etc. Both eigenvalue and mode are got for the longest cantilever ting condition, the sensitivity of stability to various loads being analyzed. It is concluded that the unbalanced weight and the falling of basket are the main factors.


Sign in / Sign up

Export Citation Format

Share Document