scholarly journals Mitigation of Vortex-Induced Vibration of Cylinders Using Cactus-Shaped Cross Sections in Subcritical Flow

2021 ◽  
Vol 9 (3) ◽  
pp. 292
Author(s):  
Jialu Wang ◽  
Fabo Chen ◽  
Chen Shi ◽  
Jiuzheng Yu

Flexible cylinders, such as marine risers, often experience sustained vortex-induced vibrations (VIVs). Installing helical strakes on a riser is the most widely used technique to mitigate VIVs. This study was inspired by the giant Saguaro Cacti which can withstand strong wind with a shallow root system. In this study, numerical simulations of flow past a stationary cylinder of a cactus-shaped cross-section in a two-dimensional flow field at a subcritical Reynolds number of 3900 were performed. Results show that cylinders of a cactus-shaped cross-section have a lower lift coefficient without increasing drag compared to those of a circular cylinder. VIV experiments on a single flexible pipe as well as on a set of two tandem-arranged flexible pipes were conducted at different reduced velocities to investigate the effects of the streamwise spacing and wake of the cactus-like body shape on VIV mitigation. Experimental results show that the cactus-like body shape can mitigate VIV responses of the cylinder at upstream position with no cost of increased drag; however, similar to helical strakes, the efficiency of VIV mitigation for the cylinder at downstream position is reduced. Although the cactus-like body shapes tested in this study were not optimized for oscillation suppression, still this study suggests that modification of the cross-sectional shape to a well-designed cactus-like shape has potentials to be used as an alternative technology to mitigate VIV of marine risers.

2012 ◽  
Vol 27 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Christian Lorbach ◽  
Ulrich Hirn ◽  
Johannes Kritzinger ◽  
Wolfgang Bauer

Abstract We present a method for 3D measurement of fiber cross sectional morphology from handsheets. An automated procedure is used to acquire 3D datasets of fiber cross sectional images using an automated microtome and light microscopy. The fiber cross section geometry is extracted using digital image analysis. Simple sample preparation and highly automated image acquisition and image analysis are providing an efficient tool to analyze large samples. It is demonstrated that if fibers are tilted towards the image plane the images of fiber cross sections are always larger than the true fiber cross section geometry. In our analysis the tilting angles of the fibers to the image plane are measured. The resulting fiber cross sectional images are distorted to compensate the error due to fiber tilt, restoring the true fiber cross sectional shape. We use an approximated correction, the paper provides error estimates of the approximation. Measurement results for fiber wall thickness, fiber coarseness and fiber collapse are presented for one hardwood and one softwood pulp.


2020 ◽  
Author(s):  
J. Lee ◽  
et al.

<div>Figure 6. Interpretative cross sections illustrating the cross-sectional geometry of several paleovalleys. See Figure 3 for location of all cross sections and Figure 8 for location of cross section CCʹ. Cross sections AAʹ and BBʹ are plotted at the same scale, and cross section CCʹ is plotted at a smaller scale. Figure 6 is intended to be viewed at a width of 45.1 cm.</div>


2021 ◽  
Vol 15 (58) ◽  
pp. 77-85
Author(s):  
Amor Bouaricha ◽  
Naoual Handel ◽  
Aziza Boutouta ◽  
Sarah Djouimaa

In this experimental work, strength results obtained on short columns subjected to concentric loads are presented. The specimens used in the tests have made of cold-rolled, thin-walled steel. Twenty short columns of the same cross-section area and wall thickness have been tested as follows: 8 empty and 12 filled with ordinary concrete. In the aim to determine the column section geometry with the highest resistance, three different types of cross-sections have been compared: rectangular, I-shaped unreinforced and, reinforced with 100 mm spaced transversal links. The parameters studied are the specimen height and the cross-sectional steel geometry. The registered experimental results have been compared to the ultimate loads intended by Eurocode 3 for empty columns and by Eurocode 4 for compound columns. These results showed that a concrete-filled composite column had improved strength compared to the empty case. Among the three cross-section types, it has been found that I-section reinforced is the most resistant than the other two sections. Moreover, the load capacity and mode of failure have been influenced by the height of the column. Also, it had noted that the experimental strengths of the tested columns don’t agree well with the EC3 and EC4 results.


Author(s):  
Lawrence N Virgin

Locating the shear, or flexural, center of non-symmetric cross-sectional beams is a key element in the teaching of structural mechanics. That is, establishing the point on the plane of the cross-section where an applied load, generating a bending moment about a principal axis, results in uni-directional deflection, and no twisting. For example, in aerospace structures it is particularly important to assess the propensity of an airfoil section profile to resist bending and torsion under the action of aerodynamic forces. Cross-sections made of thin-walls, whether of open or closed form are of special practical importance and form the basis of the material in this paper. The advent of 3D-printing allows the development of tactile demonstration models based on non-trivial geometry and direct observation.


Author(s):  
Xiaokang Xin ◽  
Fengpeng Bai ◽  
Kefeng Li

A numerical model based on the Saint-Venant equations (one-dimensional shallow water equations) is proposed to simulate shallow flows in an open channel with regular and irregular cross-section shapes. The Saint-Venant equations are solved by the finite-volume method based on Godunov-type framework with a modified Harten, Lax, and van Leer (HLL) approximate Riemann solver. Cross-sectional area is replaced by water surface level as one of primitive variables. Two numerical integral algorithms, compound trapezoidal and Gauss–Legendre integrations, are used to compute the hydrostatic pressure thrust term for natural streams with arbitrary and irregular cross-sections. The Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and second-order Runge–Kutta methods is adopted to achieve second-order accuracy in space and time, respectively. The performance of the resulting scheme is evaluated by application in rectangular channels, trapezoidal channels, and a natural mountain river. The results are compared with analytical solutions and experimental or measured data. It is demonstrated that the numerical scheme can simulate shallow flows with arbitrary cross-section shapes in practical conditions.


Author(s):  
Ehsan Sadeghi ◽  
Majid Bahrami ◽  
Ned Djilali

In many practical instances such as basic design, parametric study, and optimization analysis of thermal systems, it is often very convenient to have closed form relations to obtain the trends and a reasonable estimate of the Nusselt number. However, finding exact solutions for many practical singly-connected cross-sections, such as trapezoidal microchannels, is complex. In the present study, the square root of cross-sectional area is proposed as the characteristic length scale for Nusselt number. Using analytical solutions of rectangular, elliptical, and triangular ducts, a compact model for estimation of Nusselt number of fully-developed, laminar flow in microchannels of arbitrary cross-sections with “H1” boundary condition (constant axial wall heat flux with constant peripheral wall temperature) is developed. The proposed model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The present model is verified against analytical and numerical solutions for a wide variety of cross-sections with a maximum difference on the order of 9%.


Author(s):  
Dae-Han Jun ◽  
Pyeong-Doo Kang

Reinforced concrete shear walls are effective for resisting lateral loads imposed by wind or earthquakes. This study investigates the effectiveness of a wall fiber element in predicting the flexural nonlinear response of reinforced concrete shear walls. Model results are compared with experimental results for reinforced concrete shear walls with barbell-shaped cross sections without axial load. The analytical model is calibrated and the test measurements are processed to allow for a direct comparison of the predicted and measured flexural responses. Response results are compared at top displacements on the walls. Results obtained in the analytical model for barbell-shaped cross section wall compared favorably with experimentally responses for flexural capacity, stiffness, and deformability.


2006 ◽  
Vol 14 (3) ◽  
pp. 22-25 ◽  
Author(s):  
N. Erdman ◽  
R. Campbell ◽  
S. Asahina

SEM observation of a specimen cross section can provide important information for research and development as well as failure analysis. In most cases, surface observation alone cannot provide information concerning the cross sectional structure of granular materials, layered materials, fibrous materials, and powders. Preparing highly-polished cross sections of these materials is both a science and an art.Typically, a cross section is prepared using mechanical means like conventional mechanical polishing methods or a microtome. The sample is first embedded in a holder or device, and then polished to achieve a flat cross section. In some cases, a staining procedure is used to highlight a specific component of the sample. Such methods can be lengthy procedures that require a great deal of skill, and can introduce artifacts into soft materials, deform the material around voids, or compress layers of soft and hard materials in composite samples. Mechanical polishing can miss fine details such as the presence of hairline cracks, and present a challenge to water-soluble phases.


2011 ◽  
Vol 18 (4) ◽  
pp. 555-562 ◽  
Author(s):  
Bulent Yardimoglu ◽  
Levent Aydin

Longitudinal natural vibration frequencies of rods (or bars) with variable cross-sections are obtained from the exact solutions of differential equation of motion based on transformation method. For the rods having cross-section variations as power of the sinusoidal functions ofax+b, the differential equation is reduced to associated Legendre equation by using the appropriate transformations. Frequency equations of rods with certain cross-section area variations are found from the general solution of this equation for different boundary conditions. The present solutions are benchmarked by the solutions available in the literature for the special case of present cross-sectional variations. Moreover, the effects of cross-sectional area variations of rods on natural characteristics are studied with numerical examples.


2010 ◽  
Vol 638-642 ◽  
pp. 1579-1584 ◽  
Author(s):  
A.V. Nagasekhar ◽  
Carlos H. Cáceres ◽  
Mark Easton

Specimens of rectangular and circular cross section of a Mg-9Al binary alloy have been tensile tested and the cross section of undeformed specimens examined using scanning electron microscopy. The rectangular cross sections showed three scales in the cellular intermetallics network: coarse at the core, fine at the surface and very fine at the corners, whereas the circular ones showed only two, coarse at the core and fine at the surface. The specimens of rectangular cross section exhibited higher yield strength in comparison to the circular ones. Possible reasons for the observed increased strength of the rectangular sections are discussed.


Sign in / Sign up

Export Citation Format

Share Document