scholarly journals Comparison of External Costs of Diesel, LNG, and Electric Drive on a Ro-Ro Ferry Route

2021 ◽  
Vol 33 (3) ◽  
pp. 463-477
Author(s):  
Luka Vukić ◽  
Giambattista Guidi ◽  
Tanja Poletan Jugović ◽  
Renato Oblak

Following the sustainable transport policy, environmental criteria are becoming a competitive factor within the maritime shipping industry. The use of greener fuels in internal combustion engines, including electric drive, is a measure that can reduce external costs of transport. Alternative fuels in maritime transport, benefits, and potential attainable savings have been examined on the Kamenari–Lepatane ro-ro ferry route in the Bay of Kotor located in Montenegro. The results indicate higher total fuel cost savings by switching to LNG compared with electric power. However, the external costs of the latter are considerably lower, especially using renewable energy sources rather than fossil ones in the production process. The results obtained, relative to the magnitude and assumed complete internalization of external costs, justify the incentive to use the renewable sources as energy providers on the examined ro-ro ferry route. Environmental criteria should play a decisive role in assessing the overall benefit value, under the current trends and regulations of emissions reduction in maritime transport.

2021 ◽  
Vol 9 (4) ◽  
pp. 415
Author(s):  
George Mallouppas ◽  
Elias Ar. Yfantis

This review paper examines the possible pathways and possible technologies available that will help the shipping sector achieve the International Maritime Organization’s (IMO) deep decarbonization targets by 2050. There has been increased interest from important stakeholders regarding deep decarbonization, evidenced by market surveys conducted by Shell and Deloitte. However, deep decarbonization will require financial incentives and policies at an international and regional level given the maritime sector’s ~3% contribution to green house gas (GHG) emissions. The review paper, based on research articles and grey literature, discusses technoeconomic problems and/or benefits for technologies that will help the shipping sector achieve the IMO’s targets. The review presents a discussion on the recent literature regarding alternative fuels (nuclear, hydrogen, ammonia, methanol), renewable energy sources (biofuels, wind, solar), the maturity of technologies (fuel cells, internal combustion engines) as well as technical and operational strategies to reduce fuel consumption for new and existing ships (slow steaming, cleaning and coating, waste heat recovery, hull and propeller design). The IMO’s 2050 targets will be achieved via radical technology shift together with the aid of social pressure, financial incentives, regulatory and legislative reforms at the local, regional and international level.


Trudy NAMI ◽  
2022 ◽  
pp. 53-59
Author(s):  
A. N. Kozlov ◽  
M. I. Araslanov

Introduction (problem statement and relevance). The depletion of oil fuels reserves and the steady growth of their consumption will require new solutions in the development of technologies based on renewable energy sources. The study of the possible alternative fuels use in internal combustion engines is a complex scientific task, including the research of the alternative fuels effect on the power plants operation efficiency.The purpose of the study was to obtain the speed characteristics of a diesel engine operating on ethyl alcohol and rapeseed oil.Methodology and research methods. An air-cooled with volumetric mixture formation tractor diesel engine of dimension 2Ch 10.5/12.0 was selected as an object of research. The study was carried out by a comparative method. To measure the speed characteristic a fixed cyclic fuel supply was applied after the engine reaching the nominal operating mode at a crankshaft speed of 1800 min-1 and an average effective pressure in the cylinder of 0.588 MPa. This approach, with the all-mode regulator of the fuel pump turned off, made it possible to identify the main regularities of intra-cylinder processes at different speed modes of engine operation.Scientific novelty and results. The article presents the bench tests results of a diesel engine operating at various speed modes on ethanol and rapeseed oil, and analyzes in detail the main indicators of the combustion process and the effective engine performance in comparison to the use of traditional fuel. The practical significance lies in the possibility of using the obtained results to improve the diesel engines operation on alternative renewable fuels.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3519
Author(s):  
Dariusz Bernacki ◽  
Christian Lis

The aim of the research is to identify and quantify the direct economic effects resulting from the improved seaport nautical access and capacity expansion. This case study considers a regional port located in the Baltic sea and relates to port users, i.e., shipping operators and shippers. The effects were identified for maritime transport by comparing transport performance in two scenarios: with-the-investment and without-the-investment. Incremental calculus addresses freights (containers, dry bulk, and cereals) traded to and from the given port, changes in size of vessels, and the shipping route alternatives vis-a-vis adjacent ports in the range. Sustainable impact concerns generalized maritime transport cost, i.e., shipping operating costs and port-to-port transit time, as well as energy consumption and external costs of maritime shipping. To capture effects, daily and unit dry bulk, as well as container shipping cost, values of time, and marginal external costs were revealed in freight sea transport. As investigated, shipping operators and shippers will benefit from the reduction in ships’ operating (including ships’ fuel cost savings) and time cost, while the community will enjoy the reduction in externalities. However, the main economic effect is the reduction in shipping operating cost resulting from the increased vessel size (economies of scale).


2019 ◽  
Vol 40 (1) ◽  
pp. 7
Author(s):  
Marcelo Silveira de Farias ◽  
José Fernando Schlosser ◽  
Javier Solis Estrada ◽  
Gismael Francisco Perin ◽  
Alfran Tellechea Martini

The growing global demand of energy, the decrease of petroleum reserves and the current of environmental contamination problems, make it imperative to study renewable energy sources for use in internal combustion engines, in order to decrease the dependence on fossil fuels and reduce emissions of pollutant gases. This study aimed to evaluate the emissions of a diesel-cycle engine of an agricultural tractor that uses diesel S500 (B5) mixed with 3, 6, 9, 12 and 15% of hydrous ethanol. It determined emissions of CO2 (ppm), NOx (ppm), and opacity (k value) of gases. A standard procedure was applied considering eight operating modes (M1, M2, M3, M4, M5, M6, M7, and M8) by breaking with an electric dynamometer in a laboratory. The experimental design was completely randomized, with 60 replicates and a 6 x 8 factorial design. Greater opacity and gas emissions were observed when the engine operated with 3% ethanol, while lower emissions occurred with 12 and 15%. With these fuels, the reduction of opacity, CO2, and NOx, in relation to diesel oil, was 24.49 and 26.53%, 4.96 and 5.15%, and 6.59 and 9.70%, respectively. In conclusion, the addition of 12 and 15% ethanol in diesel oil significantly reduces engine emissions.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1478
Author(s):  
Radoslaw Wrobel ◽  
Gustaw Sierzputowski ◽  
Zbigniew Sroka ◽  
Radostin Dimitrov

Alternative fuels appeared soon after the first internal combustion engines were designed. The history of alternative fuels is basically as long as the history of the automotive industry. Initially, fuels whose physicochemical properties allowed for a change in parameters of the combustion process in order to achieve greater efficiency and reliability were searched for. Nowadays, there are significantly more variables; in addition to the above mentioned parameters, alternative fuels are being sought that will ensure environmental protection during vehicle operation and improve the ergonomics of use. This article outlines the results of the authors’ own comparative tests of vibrations of a vibroacoustic character. Based on a popular engine model, the vibration–acoustic responses of a system powered by two types of fuel, namely, diesel and biodiesel (B10), are compared. The research consists of comparing vibrations in both time and frequency domains. In the case of the time domain, the evaluation was performed with vibrations as a function of engine torque and speed. In the case of frequency analysis, the focus was on changes in the frequency response for the tested fuels. The research shows that the profile of vibroacoustic vibrations changes in the case of biodiesel power supply in relation to standard fuel. The vibration profile changes significantly as a function of speed and only slightly in relation to the engine load. The results presented in this article show different vibroacoustic responses of an engine powered by diesel and biodiesel; the change is minor for lower speeds but significant (other harmonics are dominant) for higher speeds (changes in the dominant harmonic magnitude of up to 10% at a crankshaft speed of 3000 rpm).


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1538
Author(s):  
Felipe Andrade Torres ◽  
Omid Doustdar ◽  
Jose Martin Herreros ◽  
Runzhao Li ◽  
Robert Poku ◽  
...  

The worldwide consumption of fossil hydrocarbons in the road transport sector in 2020 corresponded to roughly half of the overall consumption. However, biofuels have been discreetly contributing to mitigate gaseous emissions and participating in sustainable development, and thus leading to the extending of the commercial utilization of internal combustion engines. In this scenario, the present work aims at exploring the effects of alternative fuels containing a blend of 15% ethanol and 35% biodiesel with a 50% fossil diesel (E15D50B35) or 50% Fischer–Tropsch (F-T) diesel (E15FTD50B35) on the engine combustion, exhaust emissions (CO, HC, and NOx), particulate emissions characteristics as well as the performance of an aftertreatment system of a common rail diesel engine. It was found that one of the blends (E15FTD50B35) showed more than 30% reduction in PM concentration number, more than 25% reduction in mean particle size, and more than 85% reduction in total PM mass with respect to conventional diesel fuel. Additionally, it was found that the E15FTD50B35 blend reduces gaseous emissions of total hydrocarbons (THC) by more than 25% and NO by 3.8%. The oxidation catalyst was effective in carbonaceous emissions reduction, despite the catalyst light-off being slightly delayed in comparison to diesel fuel blends.


Trudy NAMI ◽  
2021 ◽  
pp. 58-66
Author(s):  
R. Z. Kavtaradze ◽  
B. Sun ◽  
A. S. Golosov ◽  
Zh. Chen ◽  
Ts. Chzhan ◽  
...  

Introduction (problem statement and relevance). Limited oil reserves and tightening environmental standards are forcing engine manufacturers to switch to alternative fuels in the near future, among which hydrogen is the most promising. The advantages of hydrogen are high specific heat of combustion and high combustion rate. Wide concentration limits of hydrogen combustion make it possible to use high-quality power control, thereby providing an increase in the efficiency of a hydrogen engine when compared to the basic internal combustion engine.The purpose of the study was to ensure the operation of a serial gasoline engine running on hydrogen with a new experimental fuel supply system, as well as the modification of the intake manifold design without abnormal phenomena during combustion when operating on a lean mixture, and to obtain efficient and ecological characteristics of a hydrogen engine under bench test conditions, as a result.Methodology and research methods. The work is experimental, the reliability of the results obtained is confirmed by the use of modern means for measuring and processing experimental data. The obtained results of measuring nitrogen oxides are adequate to the known Zel'dovich thermal mechanism. The value of the results lies in the fact that they show the feasibility of transferring serial internal combustion engines to hydrogen; in addition, these results are used to develop and verify mathematical 3D models of the hydrogen engine working process.Scientific novelty and results. A new system providing the necessary characteristics (pressure, duration and cycle dose) for supplying hydrogen to the intake system with two injectors for each cylinder was designed, installed and tested on the prototype engine.Practical significance. The expediency of the working cycle creation and efficiency of a hydrogen engine with an experimental lean-burn fuel supply system was confirmed, which made it possible to provide high-quality power control with external mixture formation and forced ignition.


2017 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Anh Tuan Hoang

Pure vegetable oils have the greatest promise for alternative fuels for internal combustion engines beside the depletion of conventional petroleum resources. Among various possible options, pure vegetable oils present promising of greener air substitutes for fossil fuels. Pure vegetable oils, due to the agricultural origin, liquidity, ready availability, renewability, biodegradability are able to reduce the CO2 emissions in the atmosphere. Also, in Vietnam, pure vegetable oils such as soybean oil (SoO100), coconut oil (CO100) and sunflower oil (SuO100) are available. The paper presents the results of using heated pure vegetable oils for diesel engine D243 with power of 80 hp (58.88) kW. The results of determining the power (Ne), specific fuel consumption (SFC) and efficiency (n) are used to evaluate the performance of engine. The results show that, the engine power (Ne) is 10%-15% lower, the SFC of engine D243 using pure vegetable oils is 3%-5% higher and the η is 2.5%-6.2% lower compared to diesel oil (DO). Among the pure vegetable oils, the best performance results for D243 diesel engine are obtained from heated pure sunflower oil up to 135oC.


2006 ◽  
Vol 4 (1) ◽  
pp. 351-356
Author(s):  
Marlena Owczuk

The development of the automotive industry in the world causes high environmental degradation, the main source of this degradation is engine emissions. It is necessary to introduce biofuels prepared from renewable energy sources to the market due to the limited reserve of crude oil and environmental protection. Appropriate new modifications in law regulations have been prepared in European Union. Introducing alternative fuels can reduce the emissions of harmful gases and also decrease the level of pollutions in the environment.


Sign in / Sign up

Export Citation Format

Share Document