scholarly journals Round Robin Laboratory Testing of a Scaled 10 MW Floating Horizontal Axis Wind Turbine

2021 ◽  
Vol 9 (9) ◽  
pp. 988 ◽  
Author(s):  
Sebastien Gueydon ◽  
Frances M. Judge ◽  
Michael O’Shea ◽  
Eoin Lyden ◽  
Marc Le Boulluec ◽  
...  

This paper documents the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. For the tests in wind, only the thrust of the turbine was considered and it was fixed to pre-selected levels. Hence, this work focuses on the hydrodynamic responses of a semi-submersible floating foundation. It was found that the global surge stiffness was comparable across facilities, except in one case where different azimuth angles were used for the mooring lines. Heave and pitch had the same stiffness coefficient and periods for all basins. Response Amplitude Operators (RAOs) were used to compare the responses in waves from all facilities. The shape of the motion RAOs were globally similar for all basins except around some particular frequencies. As the results were non-linear around the resonance and cancellation frequencies, the differences between facilities were magnified at these frequencies. Surge motions were significantly impacted by reflections leading to large differences in these RAOs between all basins.

2021 ◽  
Vol 9 (9) ◽  
pp. 1030
Author(s):  
Sebastien Gueydon ◽  
Frances Judge ◽  
Eoin Lyden ◽  
Michael O’Shea ◽  
Florent Thiebaut ◽  
...  

This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions.


Author(s):  
T. H. J. Bunnik ◽  
G. de Boer ◽  
J. L. Cozijn ◽  
J. van der Cammen ◽  
E. van Haaften ◽  
...  

This paper describes a series of model tests aimed at gaining insight in the tension variations in the export risers and mooring lines of a CALM buoy. The test result were therefore not only analysed carefully, but were also used as input and to validate a numerical tool that computes the coupled motions of the buoy and its mooring system. The tests were carried out at a model scale of 1 to 20. Captive tests in regular and irregular waves were carried out to investigate non-linearities in the wave forces on the buoy for example from the presence of the skirt. Decay tests were carried out to determine the damping of the buoy’s motions and to obtain the natural periods. Finally, tests in irregular waves were carried out. The dynamics of the mooring system and the resulting damping have a significant effect on the buoy’s motions. A numerical tool has been developed that combines the wave-frequency buoy motions with the dynamical behaviour of the mooring system. The motions of the buoy are computed with a linearised equation of motion. The non-linear motions of the mooring system are computed simultaneously and interact with the buoy’s motions. In this paper, a comparison is shown between the measurements and the simulations. Firstly, the wave forces obtained with a linear diffraction computation with a simplified skirt are compared with the measured wave forces. Secondly, the numerical modelling of the mooring system is checked by comparing line tensions when the buoy moves with the motion as measured in an irregular wave test. Thirdly, the decay tests are simulated to investigate the correctness of the applied viscous damping values. Finally, simulations of a test in irregular waves are shown to validate the entire integrated concept. The results show that: 1. The wave-exciting surge and heave forces can be predicted well with linear diffraction theory. However, differences between the measured and computed pitch moment are found, caused by a simplified modelling of the skirt and the shortcomings of the diffraction model. 2. To predict the tension variations in the mooring lines and risers (and estimate fatigue) it is essential that mooring line dynamics are taken into account. 3. The heave motions of the buoy are predicted well. 4. The surge motions of the buoy are predicted reasonably well. 5. The pitch motions are wrongly predicted.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


2019 ◽  
Vol 7 (3) ◽  
pp. 56 ◽  
Author(s):  
Timothy Murfet ◽  
Nagi Abdussamie

This paper describes model testing of a Tension Leg Platform Wind Turbine (TLPWT) with non-rotating blades to better understand its motion and tendon responses when subjected to combined wind and unidirectional regular wave conditions. The TLPWT structure is closely based on the National Renewable Energy Laboratory (NREL) 5 MW concept. Multiple free decay tests were performed to evaluate the natural periods of the model in the key degrees of freedom, whilst Response Amplitude Operators (RAOs) were derived to show the motion and tendon characteristics. The natural periods in surge and pitch motions evaluated from the decay tests had a relatively close agreement to the theoretical values. Overall, the tested TLPWT model exhibited typical motion responses to that of a generalised TLP with significant surge offsets along with stiff heave and pitch motions. The maximum magnitudes for the RAOs of surge motion and all tendons occurred at the longest wave period of 1.23 s (~13.0 s at full-scale) tested in this study. From the attained results, there was evidence that static wind loading on the turbine structure had some impact on the motions and tendon response, particularly in the heave direction, with an average increase of 13.1% in motion amplitude for the tested wind conditions. The wind had a negligible effect on the surge motion and slightly decreased the tendon tensions in all tendons. The results also showed the set-down magnitudes amounting to approximately 2–5% of the offset. Furthermore, the waves are the dominant factor contributing to the set-down of the TLPWT, with a minimal contribution from the static wind loading. The results of this study could be used for calibrating numerical tools such as CFD codes.


2020 ◽  
Vol 12 (2) ◽  
pp. 168781401984047
Author(s):  
Wonyoung Jeon ◽  
Jeanho Park ◽  
Seungro Lee ◽  
Youngguan Jung ◽  
Yeesock Kim ◽  
...  

An experimental and analytical method to evaluate the performance of a loop-type wind turbine generator is presented. The loop-type wind turbine is a horizontal axis wind turbine with a different shaped blade. A computational fluid dynamics analysis and experimental studies were conducted in this study to validate the performance of the computational fluid dynamics method, when compared with the experimental results obtained for a 1/15 scale model of a 3 kW wind turbine. Furthermore, the performance of a full sized wind turbine is predicted. The computational fluid dynamics analysis revealed a sufficiently large magnitude of external flow field, indicating that no factor influences the flow other than the turbine. However, the experimental results indicated that the wall surface of the wind tunnel significantly affects the flow, due to the limited cross-sectional size of the wind tunnel used in the tunnel test. The turbine power is overestimated when the blockage ratio is high; thus, the results must be corrected by defining the appropriate blockage factor (the factor that corrects the blockage ratio). The turbine performance was corrected using the Bahaj method. The simulation results showed good agreement with the experimental results. The performance of an actual 3 kW wind turbine was also predicted by computational fluid dynamics.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 703 ◽  
Author(s):  
Juhun Song ◽  
Hee-Chang Lim

In this study, the typical ocean environment was simulated with the aim to investigate the dynamic response under various environmental conditions of a Tension Leg Platform (TLP) type floating offshore wind turbine system. By applying Froude scaling, a scale model with a scale of 1:200 was designed and model experiments were carried out in a lab-scale wave flume that generated regular periodic waves by means of a piston-type wave generator while a wave absorber dissipated wave energy on the other side of the channel. The model was designed and manufactured based on the standard prototype of the National Renewable Energy Laboratory (NREL) 5 MW offshore wind turbine. In the first half of the study, the motion and structural responses for operational wave conditions of the North Sea near Scotland were considered to investigate the performance of a traditional TLP floating wind turbine compared with that of a newly designed TLP with added mooring lines. The new mooring lines were attached with the objective of increasing the horizontal stiffness of the system and thereby reducing the dominant motion of the TLP platform (i.e., the surge motion). The results of surge translational motions were obtained both in the frequency domain, using the response amplitude operator (RAO), and in the time domain, using the omega arithmetic method for the relative velocity. The results obtained show that our suggested concept improves the stability of the platform and reduces the overall motion of the system in all degrees-of-freedom. Moreover, the modified design was verified to enable operation in extreme wave conditions based on real data for a 100-year return period of the Northern Sea of California. The loads applied by the waves on the structure were also measured experimentally using modified Morison equation—the formula most frequently used to estimate wave-induced forces on offshore floating structures. The corresponding results obtained show that the wave loads applied on the new design TLP had less amplitude than the initial model and confirmed the significant contribution of the mooring lines in improving the performance of the system.


Author(s):  
Giuseppe Roberto Tomasicchio ◽  
Alberto Maria Avossa ◽  
Luigia Riefolo ◽  
Francesco Ricciardelli ◽  
Elena Musci ◽  
...  

In the present paper, the dynamic response of a spar buoy wind turbine under different wind and wave conditions is discussed. Physical model tests were performed at the Danish Hydraulic Institute (DHI) off-shore wave basin within the EU-Hydralab IV Integrated Infrastructure Initiative. The OC3-Hywind spar buoy was taken as reference prototype. A spar buoy model, 1:40 Froude-scaled, was tested using long crested regular and irregular waves, orthogonal (0 degrees) and oblique (20 degrees) to the structure. Here the results concerning regular waves, with incidence orthogonal to the structure, are presented; the selected tests considered rotating and non-rotating blades. Measurements of displacements, rotations, accelerations, forces response of the floating structure and at the mooring lines were carried out. Based on the observed data, FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy’s (DOE’s), National Renewable Energy Laboratory (NREL), was calibrated and verified. The numerical model takes into account the wave induced response and the effects of the mooring lines on the overall system. The adopted spar buoy has three equally spaced mooring lines that were modelled as quasi-static taut or catenary lines through MAP++ (static module) and MoorDyn (dynamic module) in the FAST simulation tool. The tensions along the fairleads of the three mooring lines were examined. At the end of the calibration procedure, the numerical model was successfully used to simulate the dynamic motions of the floating wind turbine under combinations of wind and sea states for the selected wave attacks. All data from the DHI tests were converted to full scale using Froude scaling before being analyzed.


Author(s):  
Heather R. Martin ◽  
Richard W. Kimball ◽  
Anthony M. Viselli ◽  
Andrew J. Goupee

Scale model wave basin testing is often employed in the development and validation of large scale offshore vessels and structures by the oil and gas, military and marine industries. A basin model test requires less time, resources and risk than a full scale test while providing real and accurate data for model validation. As the development of floating wind turbine technology progresses in order to capture the vast deepwater wind energy resource, it is clear that model testing will be essential for the economical and efficient advancement of this technology. However, the scale model testing of floating wind turbines requires one to accurately simulate the wind and wave environments, structural flexibility and wind turbine aerodynamics, and thus requires a comprehensive scaling methodology. This paper presents a unified methodology for Froude scale testing of floating wind turbines under combined wind and wave loading. First, an overview of the scaling relationships employed for the environment, floater and wind turbine are presented. Afterward, a discussion is presented concerning suggested methods for manufacturing a high-quality, low turbulence Froude scale wind environment in a wave basin to facilitate simultaneous application of wind and waves to the model. Subsequently, the difficulties of scaling the highly Reynolds number-dependent wind turbine aerodynamics is presented in addition to methods for tailoring the turbine and wind characteristics to best emulate the full scale condition. Lastly, the scaling methodology is demonstrated using results from 1/50th scale floating wind turbine testing performed at MARIN’s (Maritime Research Institute Netherlands) Offshore Basin which tested the 126 m rotor diameter NREL (National Renewable Energy Lab) horizontal axis wind turbine atop three floating platforms: a tension-leg platform, a spar-buoy and a semi-submersible. The results demonstrate the methodology’s ability to adequately simulate full scale global response of floating wind turbine systems.


Author(s):  
Luca Vita ◽  
Uwe S. Paulsen ◽  
Helge A. Madsen ◽  
Per H. Nielsen ◽  
Petter A. Berthelsen ◽  
...  

This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines [1]. The design is carried out in an iterative process, involving the different sub-components and addressing several conflicting constraints. The present design does not aim to be the final optimum solution for this concept. Instead, the goal is to have a baseline model, based on the present technology, which can be improved in the future with new dedicated technological solutions. The rotor uses curved blades, which are designed in order to minimize the gravitational loads and to be produced by the pultrusion process. The floating platform is a slender cylindrical structure rotating along with the rotor, whose stability is achieved by adding ballast at the bottom. The platform is connected to the mooring lines with some rigid arms, which are necessary to absorb the torque transmitted by the rotor. The aero-elastic simulations are carried out with Hawc2, a numerical solver developed at Risø-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part of the European project DeepWind (2010–2014), which has been financed by the European Union (FP7-Future Emerging Technologies).


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8303
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chengyuan Wang ◽  
Yuangang Tu ◽  
Zhenqing Liu

Floating wind turbine vibration controlling becomes more and more important with the increase in wind turbine size. Thus, a novel three-bifurcated mooring system is proposed for Spar-type floating wind turbines. Compared with the original mooring system using three mooring lines, three-bifurcated sub-mooring-lines are added into the novel mooring system. Specifically, each three-bifurcated sub-mooring-line is first connected to a Spar-type platform using three fairleads, then it is connected to the anchor using the main mooring line. Six fairleads are involved in the proposed mooring system, theoretically resulting in larger overturning and torsional stiffness. For further improvement, a clump mass is attached onto the main mooring lines of the proposed mooring system. The wind turbine surge, pitch, and yaw movements under regular and irregular waves are calculated to quantitatively examine the mooring system performances. A recommended configuration for the proposed mooring system is presented: the three-bifurcated sub-mooring-line and main mooring line lengths should be (0.0166, 0.0111, 0.0166) and 0.9723 times the total mooring line length in the traditional mooring system. The proposed mooring system can at most reduce the wind turbine surge movement 37.15% and 54.5% when under regular and irregular waves, respectively, and can at most reduce the yaw movement 30.1% and 40% when under regular and irregular waves, respectively.


Sign in / Sign up

Export Citation Format

Share Document