Simulation Research on Combustion Process in a Natural Gas-Diesel Dual-Fuel Marine Engine

2014 ◽  
Vol 525 ◽  
pp. 227-231 ◽  
Author(s):  
Min Xiao ◽  
Chun Long Feng

In order to solve the problem of Diesel natural gas dual fuel engine, such as power reduction, low charging efficiency, the conception of diesel engine fueled with pilot-ignited directly-injected liquefied natural gas is put forward. On the basis of this theory, a medium speed diesel of the marine is refitted into dual fuel engine, in order to keep original power, decrease the temperature of combustion and reduce emission. The LNG injection timing, duration of LNG injection and the different ratios the pilot diesel to total energy are studied the method of AVL FIRE software. Conclusions are as follows: When the different ratios pilot diesel to total energy is 0.5%, the engine can not work; Delaying the LNG injection timing, shortening the LNG injection duration and choose the right ratios pilot diesel to total energy can reach the indicated power of original machine, and the NOx emissions level will be greatly reduced.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Adam Klingbeil ◽  
Seunghyuck Hong ◽  
Roy J. Primus

Abstract Experiments were conducted on a large bore, medium speed, single cylinder, diesel engine to investigate operation with substitution ratio of natural gas (NG) varying from 0% to 93% by energy. In a previous study by the same group, these data were used to validate an analytical methodology for predicting performance and emissions under a broad spectrum of energy substitution ratios. For this paper, these experimental data are further analyzed to better understand the performance and combustion behavior under NG substitution ratios of 0%, 60%, and 93%. These results show that by transitioning from diesel-only to 60% dual-fuel (DF) (60% NG substitution ratio), an improvement in the NOx-efficiency trade-off was observed that represented a ∼3% improvement in indicated efficiency at constant NOx. Further, the transition from 60% DF to 93% DF (93% NG substitution ratio) resulted in additional efficiency improvement with a simultaneous reduction in NOx emissions. The data suggest that this improvement can be attributed to the premixed nature of the high substitution ratio case. Furthermore, the results show that high cycle-to-cycle variation was observed for some 93% DF combustion tests. Further analysis, along with diesel injection rate measurements, shows that the observed extreme sensitivity of the combustion event can be attributed to critical parameters such as diesel fuel quantity and injection timing. These results suggest a better understanding of the relative importance of combustion system components and operating conditions in controlling cycle-to-cycle variation of combustion process.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1396
Author(s):  
Hao Guo ◽  
Song Zhou ◽  
Jiaxuan Zou ◽  
Majed Shreka

The global demand for clean fuels is increasing in order to meet the requirements of the International Maritime Organization (IMO) of 0.5% global Sulphur cap and Tier III emission limits. Natural gas has begun to be popularized on liquefied natural gas (LNG) ships because of its low cost and environment friendly. In large-bore marine engines, ignition with pilot fuel in the prechamber is a good way to reduce combustion variability and extend the lean-burn limit. However, the occurrence of knock limits the increase in power. Therefore, this paper investigates the effect of pilot fuel injection conditions on performance and knocking of a marine 2-stroke low-pressure dual-fuel (LP-DF) engine. The engine simulations were performed under different pilot fuel parameters. The results showed that the average in-cylinder temperature, the average in-cylinder pressure, and the NOx emissions gradually decreased with the delay of the pilot injection timing. Furthermore, the combustion situation gradually deteriorated as the pilot injection duration increased. A shorter pilot injection duration was beneficial to reduce NOx pollutant emissions. Moreover, the number of pilot injector orifices affected the ignition of pilot fuel and the flame propagation speed inside the combustion chamber.


2021 ◽  
Vol 312 ◽  
pp. 08005
Author(s):  
Antonio Caricato ◽  
Antonio Paolo Carlucci ◽  
Antonio Ficarella ◽  
Luciano Strafella

In a previous work, the effectiveness of late pilot injection on improving combustion behaviour – in terms of fuel conversion efficiency and pollutant emission levels – in a diesel/natural gas dual-fuel engine was assessed. Then, an additional set of experiments was performed, aiming at speeding up the combustion process possibly without penalizing NOx levels. Therefore, hydrogen was added to natural gas in a percentage equal to 10%. Results show that hydrogen addition has a significant effect on the combustion development specially during the early stage of combustion: ignition delay is shortened and combustion centre is advanced, while the combustion duration increases when pilot injection timing is set to conventional values, while remains basically unchanged for late timings. Fuel conversion efficiency is only slightly penalized when hydrogen is added. Moreover, it was confirmed that, in general, combustion strategy with late pilot injection timing does not penalize fuel conversion efficiency; indeed, in some cases, it actually increases. Concerning regulated emission levels, it is again proven that late pilot injection does not penalize pollutant production: the hydrocarbons and carbon monoxide reduce as pilot injection is delayed, probably due to the higher temperatures reached into the cylinder during most part of the expansion stroke. Moreover, adding hydrogen always reduces their levels. Concerning NOx, they are drastically reduced delaying pilot injection; as expected, hydrogen addition promotes NOx formation, but the increase, evident with conventional pilot injection timings, becomes marginal with late injection strategy. Therefore, combustion strategy performance with late pilot injection in dual-fuel diesel/natural gas combustion conditions can be further improved with 10% hydrogen addition to natural gas.


2012 ◽  
Vol 192 ◽  
pp. 132-138
Author(s):  
Nan Nan Li ◽  
Shu Hua Li ◽  
Xiao Xiao Li

The numerical model of diesel engine fueled with pilot-ignited directly-injected natural gas is built, and the influence of natural gas injection timing on the combustion process is studied using CFD software. And obtained the following conclusions, as the delay of natural gas injection timing, the maximum of the mean pressure and mean temperature decrease gradually and the timings for the maximum value increase. With every delay of 5 °CA of the injection, the mean pressure reduces by about 16%.As the delay of injection timing, the delay of the timing of the high temperature and the range decrease for the high temperature region, and this is beneficial for the emission of NO, but not conducive to the emission of HC、CO and PM


Author(s):  
Jing Li ◽  
Wenming Yang ◽  
Hui An ◽  
Dezhi Zhou ◽  
Markus Kraft

In this study, dynamic ϕ-T map analysis was applied to an RCCI (reactivity controlled compression ignition) engine fueled with NG (natural gas) and diesel. The combustion process of the engine was simulated by coupled KIVA4-CHEMKIN with a DOS (diesel oil surrogate) chemical mechanism. The ϕ-T maps were constructed by the mole fractions of soot and NO obtained from SENKIN and ϕ-T conditions from engine simulations. Five parameters, namely NG fraction, 1st SOI (start of injection) timing, 2nd SOI timing, 2nd injection duration and EGR (exhaust gas recirculation) rate were varied in certain ranges individually, and the ϕ-T maps were compared and analyzed under various conditions. The results revealed how the five parameters would shift the ϕ-T conditions and influence the soot-NO contour. Among the factors, EGR rate could limit the highest temperature due to its dilute effect, hence maintaining RCCI combustion within LTC (low temperature combustion) region. The second significant parameter is the premixed NG fraction. It could set the lowest temperature; moreover, the tendency of soot formation can be mitigated due to the lessened fuel impingement and the absence of C-C bond. Finally, the region of RCCI combustion was added to the commonly known ϕ-T map diagram.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Author(s):  
Mohamed Y. E. Selim ◽  
M. S. Radwan ◽  
H. E. Saleh

The use of Jojoba Methyl Ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or LPG at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or liquefied petroleum gas (LPG) as the main fuel and Jojoba Methyl Ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic data of 100 engine cycle in terms of maximum pressure and its pressure rise rate. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the Jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.


Sign in / Sign up

Export Citation Format

Share Document