scholarly journals A Review of Methods for Ship Detection with Electro-Optical Images in Marine Environments

2021 ◽  
Vol 9 (12) ◽  
pp. 1408
Author(s):  
Liqian Wang ◽  
Shuzhen Fan ◽  
Yunxia Liu ◽  
Yongfu Li ◽  
Cheng Fei ◽  
...  

The ocean connects all continents and is an important space for human activities. Ship detection with electro-optical images has shown great potential due to the abundant imaging spectrum and, hence, strongly supports human activities in the ocean. A suitable imaging spectrum can obtain effective images in complex marine environments, which is the premise of ship detection. This paper provides an overview of ship detection methods with electro-optical images in marine environments. Ship detection methods with sea–sky backgrounds include traditional and deep learning methods. Traditional ship detection methods comprise the following steps: preprocessing, sea–sky line (SSL) detection, region of interest (ROI) extraction, and identification. The use of deep learning is promising in ship detection; however, it requires a large amount of labeled data to build a robust model, and its targeted optimization for ship detection in marine environments is not sufficient.

2021 ◽  
Vol 13 (10) ◽  
pp. 1909
Author(s):  
Jiahuan Jiang ◽  
Xiongjun Fu ◽  
Rui Qin ◽  
Xiaoyan Wang ◽  
Zhifeng Ma

Synthetic Aperture Radar (SAR) has become one of the important technical means of marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National territorial waters to achieve ship monitoring is conducive to national maritime law enforcement, implementation of maritime traffic control, and maintenance of national maritime security, so ship detection has been a hot spot and focus of research. After the development from traditional detection methods to deep learning combined methods, most of the research always based on the evolving Graphics Processing Unit (GPU) computing power to propose more complex and computationally intensive strategies, while in the process of transplanting optical image detection ignored the low signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR image processing method that makes full use of image information and the network’s ability to extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning framework for modeling architecture and training models. The YOLO-V4-light network was tailored for real-time and implementation, significantly reducing the model size, detection time, number of computational parameters, and memory consumption, and refining the network for three-channel images to compensate for the loss of accuracy due to light-weighting. The test experiments were completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical application in maritime safety monitoring and emergency rescue.


2021 ◽  
Vol 11 (4) ◽  
pp. 1965
Author(s):  
Raul-Ronald Galea ◽  
Laura Diosan ◽  
Anca Andreica ◽  
Loredana Popa ◽  
Simona Manole ◽  
...  

Despite the promising results obtained by deep learning methods in the field of medical image segmentation, lack of sufficient data always hinders performance to a certain degree. In this work, we explore the feasibility of applying deep learning methods on a pilot dataset. We present a simple and practical approach to perform segmentation in a 2D, slice-by-slice manner, based on region of interest (ROI) localization, applying an optimized training regime to improve segmentation performance from regions of interest. We start from two popular segmentation networks, the preferred model for medical segmentation, U-Net, and a general-purpose model, DeepLabV3+. Furthermore, we show that ensembling of these two fundamentally different architectures brings constant benefits by testing our approach on two different datasets, the publicly available ACDC challenge, and the imATFIB dataset from our in-house conducted clinical study. Results on the imATFIB dataset show that the proposed approach performs well with the provided training volumes, achieving an average Dice Similarity Coefficient of the whole heart of 89.89% on the validation set. Moreover, our algorithm achieved a mean Dice value of 91.87% on the ACDC validation, being comparable to the second best-performing approach on the challenge. Our approach provides an opportunity to serve as a building block of a computer-aided diagnostic system in a clinical setting.


2020 ◽  
Vol 12 (15) ◽  
pp. 2502 ◽  
Author(s):  
Bulent Ayhan ◽  
Chiman Kwan ◽  
Bence Budavari ◽  
Liyun Kwan ◽  
Yan Lu ◽  
...  

Land cover classification with the focus on chlorophyll-rich vegetation detection plays an important role in urban growth monitoring and planning, autonomous navigation, drone mapping, biodiversity conservation, etc. Conventional approaches usually apply the normalized difference vegetation index (NDVI) for vegetation detection. In this paper, we investigate the performance of deep learning and conventional methods for vegetation detection. Two deep learning methods, DeepLabV3+ and our customized convolutional neural network (CNN) were evaluated with respect to their detection performance when training and testing datasets originated from different geographical sites with different image resolutions. A novel object-based vegetation detection approach, which utilizes NDVI, computer vision, and machine learning (ML) techniques, is also proposed. The vegetation detection methods were applied to high-resolution airborne color images which consist of RGB and near-infrared (NIR) bands. RGB color images alone were also used with the two deep learning methods to examine their detection performances without the NIR band. The detection performances of the deep learning methods with respect to the object-based detection approach are discussed and sample images from the datasets are used for demonstrations.


2021 ◽  
Vol 13 (16) ◽  
pp. 3168
Author(s):  
Linhao Li ◽  
Zhiqiang Zhou ◽  
Bo Wang ◽  
Lingjuan Miao ◽  
Zhe An ◽  
...  

With the successful application of the convolutional neural network (CNN), significant progress has been made by CNN-based ship detection methods. However, they often face considerable difficulties when applied to a new domain where the imaging condition changes significantly. Although training with the two domains together can solve this problem to some extent, the large domain shift will lead to sub-optimal feature representations, and thus weaken the generalization ability on both domains. In this paper, a domain adaptive ship detection method is proposed to better detect ships between different domains. Specifically, the proposed method minimizes the domain discrepancies via both image-level adaption and instance-level adaption. In image-level adaption, we use multiple receptive field integration and channel domain attention to enhance the feature’s resistance to scale and environmental changes, respectively. Moreover, a novel boundary regression module is proposed in instance-level adaption to correct the localization deviation of the ship proposals caused by the domain shift. Compared with conventional regression approaches, the proposed boundary regression module is able to make more accurate predictions via the effective extreme point features. The two adaption components are implemented by learning the corresponding domain classifiers respectively in an adversarial training way, thereby obtaining a robust model suitable for both of the two domains. Experiments on both supervised and unsupervised domain adaption scenarios are conducted to verify the effectiveness of the proposed method.


Object detection in videos is gaining more attention recently as it is related to video analytics and facilitates image understanding and applicable to . The video object detection methods can be divided into traditional and deep learning based methods. Trajectory classification, low rank sparse matrix, background subtraction and object tracking are considered as traditional object detection methods as they primary focus is informative feature collection, region selection and classification. The deep learning methods are more popular now days as they facilitate high-level features and problem solving in object detection algorithms. We have discussed various object detection methods and challenges in this paper.


Author(s):  
Haomiao Liu ◽  
Haizhou Xu ◽  
Lei Zhang ◽  
Weigang Lu ◽  
Fei Yang ◽  
...  

Maritime ship monitoring plays an important role in maritime transportation. Fast and accurate detection of maritime ship is the key to maritime ship monitoring. The main sources of marine ship images are optical images and synthetic aperture radar (SAR) images. Different from natural images, SAR images are independent to daylight and weather conditions. Traditional ship detection methods of SAR images mainly depend on the statistical distribution of sea clutter, which leads to poor robustness. As a deep learning detector, RetinaNet can break this obstacle, and the problem of imbalance on feature level and objective level can be further solved by combining with Libra R-CNN algorithm. In this paper, we modify the feature fusion part of Libra RetinaNet by adding a bottom-up path augmentation structure to better preserve the low-level feature information, and we expand the dataset through style transfer. We evaluate our method on the publicly available SAR dataset of ship detection with complex backgrounds. The experimental results show that the improved Libra RetinaNet can effectively detect multi-scale ships through expansion of the dataset, with an average accuracy of 97.38%.


2019 ◽  
Vol 11 (7) ◽  
pp. 786 ◽  
Author(s):  
Yang-Lang Chang ◽  
Amare Anagaw ◽  
Lena Chang ◽  
Yi Wang ◽  
Chih-Yu Hsiao ◽  
...  

Synthetic aperture radar (SAR) imagery has been used as a promising data source for monitoring maritime activities, and its application for oil and ship detection has been the focus of many previous research studies. Many object detection methods ranging from traditional to deep learning approaches have been proposed. However, majority of them are computationally intensive and have accuracy problems. The huge volume of the remote sensing data also brings a challenge for real time object detection. To mitigate this problem a high performance computing (HPC) method has been proposed to accelerate SAR imagery analysis, utilizing the GPU based computing methods. In this paper, we propose an enhanced GPU based deep learning method to detect ship from the SAR images. The You Only Look Once version 2 (YOLOv2) deep learning framework is proposed to model the architecture and training the model. YOLOv2 is a state-of-the-art real-time object detection system, which outperforms Faster Region-Based Convolutional Network (Faster R-CNN) and Single Shot Multibox Detector (SSD) methods. Additionally, in order to reduce computational time with relatively competitive detection accuracy, we develop a new architecture with less number of layers called YOLOv2-reduced. In the experiment, we use two types of datasets: A SAR ship detection dataset (SSDD) dataset and a Diversified SAR Ship Detection Dataset (DSSDD). These two datasets were used for training and testing purposes. YOLOv2 test results showed an increase in accuracy of ship detection as well as a noticeable reduction in computational time compared to Faster R-CNN. From the experimental results, the proposed YOLOv2 architecture achieves an accuracy of 90.05% and 89.13% on the SSDD and DSSDD datasets respectively. The proposed YOLOv2-reduced architecture has a similarly competent detection performance as YOLOv2, but with less computational time on a NVIDIA TITAN X GPU. The experimental results shows that the deep learning can make a big leap forward in improving the performance of SAR image ship detection.


2020 ◽  
Vol 62 ◽  
pp. 47-62 ◽  
Author(s):  
Martin Gjoreski ◽  
Vito Janko ◽  
Gašper Slapničar ◽  
Miha Mlakar ◽  
Nina Reščič ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1033
Author(s):  
Qiaodi Wen ◽  
Ziqi Luo ◽  
Ruitao Chen ◽  
Yifan Yang ◽  
Guofa Li

By detecting the defect location in high-resolution insulator images collected by unmanned aerial vehicle (UAV) in various environments, the occurrence of power failure can be timely detected and the caused economic loss can be reduced. However, the accuracies of existing detection methods are greatly limited by the complex background interference and small target detection. To solve this problem, two deep learning methods based on Faster R-CNN (faster region-based convolutional neural network) are proposed in this paper, namely Exact R-CNN (exact region-based convolutional neural network) and CME-CNN (cascade the mask extraction and exact region-based convolutional neural network). Firstly, we proposed an Exact R-CNN based on a series of advanced techniques including FPN (feature pyramid network), cascade regression, and GIoU (generalized intersection over union). RoI Align (region of interest align) is introduced to replace RoI pooling (region of interest pooling) to address the misalignment problem, and the depthwise separable convolution and linear bottleneck are introduced to reduce the computational burden. Secondly, a new pipeline is innovatively proposed to improve the performance of insulator defect detection, namely CME-CNN. In our proposed CME-CNN, an insulator mask image is firstly generated to eliminate the complex background by using an encoder-decoder mask extraction network, and then the Exact R-CNN is used to detect the insulator defects. The experimental results show that our proposed method can effectively detect insulator defects, and its accuracy is better than the examined mainstream target detection algorithms.


2020 ◽  
Vol 12 (18) ◽  
pp. 2997 ◽  
Author(s):  
Tianwen Zhang ◽  
Xiaoling Zhang ◽  
Xiao Ke ◽  
Xu Zhan ◽  
Jun Shi ◽  
...  

Ship detection in synthetic aperture radar (SAR) images is becoming a research hotspot. In recent years, as the rise of artificial intelligence, deep learning has almost dominated SAR ship detection community for its higher accuracy, faster speed, less human intervention, etc. However, today, there is still a lack of a reliable deep learning SAR ship detection dataset that can meet the practical migration application of ship detection in large-scene space-borne SAR images. Thus, to solve this problem, this paper releases a Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) from Sentinel-1, for small ship detection under large-scale backgrounds. LS-SSDD-v1.0 contains 15 large-scale SAR images whose ground truths are correctly labeled by SAR experts by drawing support from the Automatic Identification System (AIS) and Google Earth. To facilitate network training, the large-scale images are directly cut into 9000 sub-images without bells and whistles, providing convenience for subsequent detection result presentation in large-scale SAR images. Notably, LS-SSDD-v1.0 has five advantages: (1) large-scale backgrounds, (2) small ship detection, (3) abundant pure backgrounds, (4) fully automatic detection flow, and (5) numerous and standardized research baselines. Last but not least, combined with the advantage of abundant pure backgrounds, we also propose a Pure Background Hybrid Training mechanism (PBHT-mechanism) to suppress false alarms of land in large-scale SAR images. Experimental results of ablation study can verify the effectiveness of the PBHT-mechanism. LS-SSDD-v1.0 can inspire related scholars to make extensive research into SAR ship detection methods with engineering application value, which is conducive to the progress of SAR intelligent interpretation technology.


Sign in / Sign up

Export Citation Format

Share Document