scholarly journals Distribution and Origin of Major, Trace and Rare Earth Elements in Wild Edible Mushrooms: Urban vs. Forest Areas

2021 ◽  
Vol 7 (12) ◽  
pp. 1068
Author(s):  
Maja Ivanić ◽  
Martina Furdek Turk ◽  
Zdenko Tkalčec ◽  
Željka Fiket ◽  
Armin Mešić

This paper investigates the composition of major, trace, and rare earth elements in 15 different species of wild edible mushrooms and the possible effect of urban pollution on elemental uptake. The collected mushrooms include different species from the green areas of the city, exposed to urban pollution, and from the forests, with limited anthropogenic influence. Through a comprehensive approach that included the analysis of 46 elements, an attempt was made to expand knowledge about element uptake by mushroom fruiting bodies. The results showed a wide variability in the composition of mushrooms, suggesting a number of factors influencing their element uptake capacity. The data obtained do not indicate significant exposure to anthropogenic influences, regardless of sampling location. While major elements’ levels appear to be influenced more by species-specific affinities, this is not true for trace elements, whose levels presumably reflect the geochemical characteristics of the sampling site. However, the risk assessment showed that consumption of excessive amounts of the mushrooms studied, both from urban areas and from forests, may have adverse health effects.

2020 ◽  
Vol 34 (2) ◽  
pp. 183-194
Author(s):  
Alexandre Chaves ◽  
Luiz Knauer

The hematitic phyllite is a rock that occurs in the São João da Chapada and Sopa-Brumadinho formations of the southern Espinhaço range. Its origin is widely discussed in papers on Espinhaço, but there is no consensus on its protolith due to certain characteristics of the lithotype, such as its chemical composition and textural features. The pattern of rare earth elements strongly enriched [(La/Yb)N 6.80-17.68], with light rare earth elements [(La/Sm)N 2.54-4.83] richer than heavy ones [(Gd/Yb)N 1.28-3,32], suggests that the protolith was an alkaline volcanic rock formed during the rift that generated the Espinhaço basin. The major elements indicate that the alkaline rock met weathering processes, becoming a regolith. During the Brasiliano metamorphism, it finally became hematitic phyllite. Other characteristics of the lithotype, such as the presence of sericite-bearing rounded parts (possibly formed by alteration and deformation of leucite crystals) and the preservation of igneous layering, suggest a potassic volcanic origin for hematitic phyllite. In diagram that allows identifying altered and metamorphic volcanic rocks, the investigated samples have composition similar to a feldspathoid-rich alkali-basalt, probably a leucite tephrite, a leucitite or even a lamproite, rocks from mantle source.


2019 ◽  
Vol 486 (5) ◽  
pp. 583-587
Author(s):  
A. M. Agashev

The paper presents the results of major and trace elements composition study of garnet megacrysts from Mir kimberlite pipe. On the major elements composition those garnets classified as low Cr and high Ti pyropes. Concentrations of TiO2 show a negative correlation with MgO и Cr2O3 contents in megacrysts composition. Fractional crystallization modeling indicates that the most appropriate melt to reproduce the garnet trace elements signatures is the melt of picritic composition. Composition of garnets crystallized from kimberlite melt do not correspond to observed natural garnets composition. Kimberlites contain less of Ti, Zr, Y and heavy REE (rare earth elements) but more of very incompatible elements such as light REE, Th, U, Nb, Ba then the model melt composition that necessary for garnet crystallization.


2001 ◽  
Vol 34 (3) ◽  
pp. 1255
Author(s):  
S. PANILAS ◽  
G. HATZIYANNIS

Multivariate statistical analysis was used on existing geochemical data of the Drama lignite deposit, eastern Macedonia, Greece. Factor analysis with varimax rotation technique was applied to study the distribution of major, trace and rare earth elements in the lignite and 850°C lignitic ash, to find a small set of factors that could explain most of the geochemical variability. The study showed that major elements AI, Na, Κ, contained in the lignite samples, presented high correlation with most of the trace and rare earth elements. In 850°C lignitic ashes major and trace elements present different redistribution. Only Al remained correlated with the trace elements Co, Cr, Rb, Ta, Th, Ti, Sc and rare earths related with inorganic matter in the lignite beds. Trace elements Fe, Mo, U, V, W, and Lu were associated with organic matter of lignite and had also been affected by the depositional environment.


1991 ◽  
Vol 28 (9) ◽  
pp. 1429-1443 ◽  
Author(s):  
Luc Harnois ◽  
John M. Moore

Samples of two subalkaline metavolcanic suites, the Tudor formation (ca. 1.28 Ga) and the overlying Kashwakamak formation, have been analysed for major elements and 27 trace elements (including rare-earth elements). The Tudor formation is tholeiitic and contains mainly basaltic flows, whereas the Kashwakamak formation is calc-alkaline and contains mainly andesitic rocks with minor felsic rocks. The succession has been regionally metamorphosed to upper greenschist – lower amphibolite facies. Trace-element abundances and ratios indicate that rocks of the Tudor and Kashwakamak formations are island-arc type. Geochemical modelling using rare-earth elements, Zr, Ti, and Y indicates that the Tudor volcanic rocks are not derived from a single parental magma through simple fractional crystallization. Equilibrium partial melting of a heterogeneous Proterozoic upper mantle can explain the trace-element abundances and ratios of Tudor formation volcanic rocks. The intermediate to felsic rocks of the Kashwakamak formation appear to have been derived from a separate partial melting event. The data are consistent with an origin of the arc either on oceanic crust or on thinned continental crust, and with accretion of the arc to a continental margin between the time of extrusion of Tudor volcanic rocks and that of Kashwakamak volcanic rocks.


2006 ◽  
Vol 985 ◽  
Author(s):  
Timothy E Payne ◽  
Reto Giere ◽  
Kaye P Hart ◽  
Gregory R Lumpkin ◽  
Peter J McGlinn

AbstractChemical extraction techniques and scanning electron microscopy were used to study the distribution and behavior of actinides and rare earth elements (REE) in hydrothermal veins at Adamello, (Italy). The six samples discussed in this paper were from the phlogopite zone, which is one of the major vein zones. The samples were similar in their bulk chemical composition, mineralogy, and leaching behavior of major elements (determined by extraction with 9M HCl). However, there were major differences in the extractability of REE and actinides. The most significant influence on the leaching characteristics appears to be the amounts of U, Th and REE incorporated in resistant host phases. Uranium and Th are very highly enriched in zirconolite grains. Actinides were more readily leached from samples with a higher content of U and Th, relative to the amount of zirconolite. The results show that REE and actinides present in chemically resistant minerals can be retained under aggressive leaching conditions.


2021 ◽  
Author(s):  
Gregory Pope ◽  
Jennifer Callanan ◽  
Jason Darley ◽  
Michael Flood ◽  
Jeffrey Wear ◽  
...  

<p>The wood ash contribution to soils represents a unique and important part of soil organic carbon following fires.  Wood ash imparts chemical and physical changes to the soil, evident in elements other than carbon.  Our case studies are from recent wildfires and experimental burns in mixed hardwood forests in the Pocono Mountains of Pennsylvania, USA.  In these studies, we identified increases in most of the major elements and some minor elements in soils following forest fires, analyzed with ICP-MS. Elements such as Mn, Mg, Na, Ca, Na, K, Cu, and Ba, derive from an infusion of biomass ash, with variable contribution depending on, for instance, tree species. In the case of Ba and Cu, their presence is distinctly different from any mineral parent material contribution to the soil, and therefore unique signatures of fire contribution. Signature post-fire elements persist in some cases over one year following the fire, and are found in both topsoil horizons and into illuvial soil horizons.</p><p>In the course of these investigations, we also found a curious depletion of all rare earth elements (REEs) and certain trace elements from the soil following forest fires, and in adjacent stream and wetland sediments. The post-fire difference in REE concentration was statistically significant (p < 0.10, N=51) in all but Eu and U, with light REEs La, Ce and Pr showing the most significant decreases. Among other trace elements, Sc (which behaves similarly to REEs), V, Cr, Ga, and Rb also exhibited statistically significant decreases (though other elements Cu and Sr increase along with the ash input). The reasons for the depletions are unclear. Other authors report that REE dynamics in soils are poorly understood, but may be associated with phosphates, carbonates, and silicates in the soil. These are relatively enriched via post-fire biomass ash, yet the associated REEs are missing. It is unlikely that the elements would have preferentially translocated through and below the soil profile. Erosion is ruled out, otherwise the ash-associated major and trace elements would also be depleted. Two possible causes for post-fire REE loss are 1) volatilization from the soil during the fire, and 2) rapid uptake by post-fire succession plants, notably ferns, which are known to bioaccumulate REEs. Further research is warranted, following the ongoing post-fire vegetation recovery, and the dynamics of REEs within the soil profile.       </p>


Sign in / Sign up

Export Citation Format

Share Document