Partitioning of rare earth elements, yttrium, and some major elements among source rocks, liquid and vapor of Larderello-Travale geothermal field, Tuscany (Central Italy)

2003 ◽  
Vol 67 (2) ◽  
pp. 171-183 ◽  
Author(s):  
P. Möller ◽  
P. Dulski ◽  
G. Morteani
2020 ◽  
Vol 34 (2) ◽  
pp. 183-194
Author(s):  
Alexandre Chaves ◽  
Luiz Knauer

The hematitic phyllite is a rock that occurs in the São João da Chapada and Sopa-Brumadinho formations of the southern Espinhaço range. Its origin is widely discussed in papers on Espinhaço, but there is no consensus on its protolith due to certain characteristics of the lithotype, such as its chemical composition and textural features. The pattern of rare earth elements strongly enriched [(La/Yb)N 6.80-17.68], with light rare earth elements [(La/Sm)N 2.54-4.83] richer than heavy ones [(Gd/Yb)N 1.28-3,32], suggests that the protolith was an alkaline volcanic rock formed during the rift that generated the Espinhaço basin. The major elements indicate that the alkaline rock met weathering processes, becoming a regolith. During the Brasiliano metamorphism, it finally became hematitic phyllite. Other characteristics of the lithotype, such as the presence of sericite-bearing rounded parts (possibly formed by alteration and deformation of leucite crystals) and the preservation of igneous layering, suggest a potassic volcanic origin for hematitic phyllite. In diagram that allows identifying altered and metamorphic volcanic rocks, the investigated samples have composition similar to a feldspathoid-rich alkali-basalt, probably a leucite tephrite, a leucitite or even a lamproite, rocks from mantle source.


2006 ◽  
Vol 985 ◽  
Author(s):  
Belen Buil ◽  
Paloma Gómez ◽  
Antonio Garralón ◽  
M. Jesús Turrero

AbstractREE concentrations have been determined in groundwaters, granite and fracture fillings in a restored uranium mine.The granitoids normalized REE patterns of groundwaters show HREE-enrichment and positive Eu anomalies. This suggests that the REE are fractionated during leaching from the source rocks by groundwaters. Preferential leaching of HREE would be consistent with the greater stability of their aqueous complexes compared to those of the LREE, together with the dissolution of certain fracture filling minerals, dissolution/alteration of phyllosilicates and colloidal transport.


2019 ◽  
Vol 486 (5) ◽  
pp. 583-587
Author(s):  
A. M. Agashev

The paper presents the results of major and trace elements composition study of garnet megacrysts from Mir kimberlite pipe. On the major elements composition those garnets classified as low Cr and high Ti pyropes. Concentrations of TiO2 show a negative correlation with MgO и Cr2O3 contents in megacrysts composition. Fractional crystallization modeling indicates that the most appropriate melt to reproduce the garnet trace elements signatures is the melt of picritic composition. Composition of garnets crystallized from kimberlite melt do not correspond to observed natural garnets composition. Kimberlites contain less of Ti, Zr, Y and heavy REE (rare earth elements) but more of very incompatible elements such as light REE, Th, U, Nb, Ba then the model melt composition that necessary for garnet crystallization.


2001 ◽  
Vol 34 (3) ◽  
pp. 1255
Author(s):  
S. PANILAS ◽  
G. HATZIYANNIS

Multivariate statistical analysis was used on existing geochemical data of the Drama lignite deposit, eastern Macedonia, Greece. Factor analysis with varimax rotation technique was applied to study the distribution of major, trace and rare earth elements in the lignite and 850°C lignitic ash, to find a small set of factors that could explain most of the geochemical variability. The study showed that major elements AI, Na, Κ, contained in the lignite samples, presented high correlation with most of the trace and rare earth elements. In 850°C lignitic ashes major and trace elements present different redistribution. Only Al remained correlated with the trace elements Co, Cr, Rb, Ta, Th, Ti, Sc and rare earths related with inorganic matter in the lignite beds. Trace elements Fe, Mo, U, V, W, and Lu were associated with organic matter of lignite and had also been affected by the depositional environment.


2020 ◽  
Vol 8 (4) ◽  
pp. T981-T990
Author(s):  
Haijun Gao ◽  
Delu Li ◽  
Dingming Dong ◽  
Hongjun Jing ◽  
Hao Tang

The Chang 7 oil layer from the upper Triassic Yanchang Formation is an important layer for hydrocarbon exploration. Most studies on the Chang 7 oil layer have focused on the source rocks, while research on the sandstone is still inadequate, especially on the petrography and geochemical characteristics. Using seven sandstone samples of the Chang 7 oil layer in the Yanhe profile, the grain-size analysis, major elements, trace elements, and rare earth elements were tested. The results find that the sandstone of fine-grained sediments of the Chang 7 oil layer is dominated by arkose with a minor number of lithic arkose. The range of grain size (Mz) is from 2.72 to 3.92 Φ, and the C value and M value of the sandstone samples suggest characteristics of turbidity deposition. The Al/Si ratios of all of the samples imply high clay mineral content. The results of trace and rare earth elements demonstrate the reducing condition, freshwater, and cold and dry weather. The provenance of the sandstone samples is mainly from island arc acidic volcanic rock, and the type of provenance is mixed with sedimentary rock, granite, and alkaline basalt. The tectonic background is continental island arc. This study provides a systematic geologic foundation for the formation of sandstone of Chang 7 oil layer in Ordos Basin.


2012 ◽  
Vol 30 (5) ◽  
pp. 803-818 ◽  
Author(s):  
Cunliang Zhao ◽  
Dujuan Duan ◽  
Yanheng Li ◽  
Jianya Zhang

Rare earth elements (REEs) can provide lots of information relevant to the evolution of source rocks, depositional environment, and epigenetic tectonic activity. In this study, 14 bench samples (including 11 coals, 1parting, 1roof and 1floor) of the No. 2 coal seam from Huangling Mine, Huanglong Coalfield, Ordos Basin, China were collected to study the REE geochemistry. The average concentration of REEs is 44.03 μg/g, and it is lower than those in coals of the Chinese and world coal. The coals are enriched in light REEs and the LREEs-HREEs have been highly fractionated, with an average (La/Yb) N of 11.38. The values of Ce/Ce* are more or less than 1 (with an average 0.92) and indicates that the anomaly of Ce is very slight. However, the values of Eu/Eu* (with an average 7.69 of coal) are distinctly higher than reported data of coals. The extremely high contents of Ba caused the geochemical anomaly of REEs. The Ba2+ was origin from the barium metallogenic belt in Qinling Old-upland.


1991 ◽  
Vol 28 (9) ◽  
pp. 1429-1443 ◽  
Author(s):  
Luc Harnois ◽  
John M. Moore

Samples of two subalkaline metavolcanic suites, the Tudor formation (ca. 1.28 Ga) and the overlying Kashwakamak formation, have been analysed for major elements and 27 trace elements (including rare-earth elements). The Tudor formation is tholeiitic and contains mainly basaltic flows, whereas the Kashwakamak formation is calc-alkaline and contains mainly andesitic rocks with minor felsic rocks. The succession has been regionally metamorphosed to upper greenschist – lower amphibolite facies. Trace-element abundances and ratios indicate that rocks of the Tudor and Kashwakamak formations are island-arc type. Geochemical modelling using rare-earth elements, Zr, Ti, and Y indicates that the Tudor volcanic rocks are not derived from a single parental magma through simple fractional crystallization. Equilibrium partial melting of a heterogeneous Proterozoic upper mantle can explain the trace-element abundances and ratios of Tudor formation volcanic rocks. The intermediate to felsic rocks of the Kashwakamak formation appear to have been derived from a separate partial melting event. The data are consistent with an origin of the arc either on oceanic crust or on thinned continental crust, and with accretion of the arc to a continental margin between the time of extrusion of Tudor volcanic rocks and that of Kashwakamak volcanic rocks.


2006 ◽  
Vol 985 ◽  
Author(s):  
Timothy E Payne ◽  
Reto Giere ◽  
Kaye P Hart ◽  
Gregory R Lumpkin ◽  
Peter J McGlinn

AbstractChemical extraction techniques and scanning electron microscopy were used to study the distribution and behavior of actinides and rare earth elements (REE) in hydrothermal veins at Adamello, (Italy). The six samples discussed in this paper were from the phlogopite zone, which is one of the major vein zones. The samples were similar in their bulk chemical composition, mineralogy, and leaching behavior of major elements (determined by extraction with 9M HCl). However, there were major differences in the extractability of REE and actinides. The most significant influence on the leaching characteristics appears to be the amounts of U, Th and REE incorporated in resistant host phases. Uranium and Th are very highly enriched in zirconolite grains. Actinides were more readily leached from samples with a higher content of U and Th, relative to the amount of zirconolite. The results show that REE and actinides present in chemically resistant minerals can be retained under aggressive leaching conditions.


Sign in / Sign up

Export Citation Format

Share Document