scholarly journals Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 275
Author(s):  
Lingyue Li ◽  
Zhixin Qi ◽  
Shi Xian ◽  
Dong Yao

Agricultural land resources have been the central issue for the Chinese government in its attempts to secure food and agricultural sustainability. Yet strict land use control does not protect the agricultural land from erosion by urban expansion. Identifying the specific patterns and mechanisms of the agricultural land conversion, thus, is critical for land management and related decision making. Based on the annual nominal 30 m land use/land cover datasets (called CLUD-A), this study goes below the national/regional level to examine agricultural land conversion in Chongqing from a multiscale perspective. At the metropolis and its subdivision’s scales, the volume of the conversion area has been generally increasing, from 122.40 km2 in 1980–1990, 162.26 km2 in 1990–2000, and 706.14 km2 in 2000–2010, to 684.83 km2 in 2010–2015. Such a conversion in the main city area and its surroundings far outweighed that in the rural outskirts, as 68.9% (1990–2000), 92.2% (2000–2010), and 82.7% (2010–2015) of the conversion happened in the former. Moreover, values of Gini coefficients and coefficient of variation (CV) based on the county/district scale (Gini [0.46, 0.64], CV [0.69, 0.99] throughout the four periods) are much lower than those based on the town/village scale (Gini [0.88, 0.94], CV [3.18, 4.47] throughout the four periods), suggesting the uneven extent of spatial distribution of the agricultural land conversion trickles down along with the downscale of administration: the lower the administrative level, the more severe the unbalance. The policy rationale behind this transition is also discussed. This research argues for tangible approaches to a sustainable rural-urban transformation.

2021 ◽  
Vol 13 (16) ◽  
pp. 3337
Author(s):  
Shaker Ul Din ◽  
Hugo Wai Leung Mak

Land-use/land cover change (LUCC) is an important problem in developing and under-developing countries with regard to global climatic changes and urban morphological distribution. Since the 1900s, urbanization has become an underlying cause of LUCC, and more than 55% of the world’s population resides in cities. The speedy growth, development and expansion of urban centers, rapid inhabitant’s growth, land insufficiency, the necessity for more manufacture, advancement of technologies remain among the several drivers of LUCC around the globe at present. In this study, the urban expansion or sprawl, together with spatial dynamics of Hyderabad, Pakistan over the last four decades were investigated and reviewed, based on remotely sensed Landsat images from 1979 to 2020. In particular, radiometric and atmospheric corrections were applied to these raw images, then the Gaussian-based Radial Basis Function (RBF) kernel was used for training, within the 10-fold support vector machine (SVM) supervised classification framework. After spatial LUCC maps were retrieved, different metrics like Producer’s Accuracy (PA), User’s Accuracy (UA) and KAPPA coefficient (KC) were adopted for spatial accuracy assessment to ensure the reliability of the proposed satellite-based retrieval mechanism. Landsat-derived results showed that there was an increase in the amount of built-up area and a decrease in vegetation and agricultural lands. Built-up area in 1979 only covered 30.69% of the total area, while it has increased and reached 65.04% after four decades. In contrast, continuous reduction of agricultural land, vegetation, waterbody, and barren land was observed. Overall, throughout the four-decade period, the portions of agricultural land, vegetation, waterbody, and barren land have decreased by 13.74%, 46.41%, 49.64% and 85.27%, respectively. These remotely observed changes highlight and symbolize the spatial characteristics of “rural to urban transition” and socioeconomic development within a modernized city, Hyderabad, which open new windows for detecting potential land-use changes and laying down feasible future urban development and planning strategies.


Author(s):  
◽  
L. Thapa ◽  
D. P. Shukla

Abstract. Changes of agricultural land into non-agricultural land is the main issue of increasing population and urbanization. The objective of this paper is to identify the various land resources and its changes into other Land Use Land Cover (LULC) type. LANDSAT satellite data for 1990, 2000, 2010 and 2018 years of Kailali district Nepal was acquired for supervised LULC mapping and change analysis using ENVI 5.4 software. Sentinel-2 and Google earth satellite data were used for the accuracy assessment of the LULC map. The time-series data analysis from 1990–2000–2010–2018 shows major changes in vegetation and agriculture. The changes in LULC show that settlement and bare land is continuously increasing throughout these years. The change in land use and land cover during the period of 1990–2018 shows that the settlement area is increased by 204%; and agriculture is decreased by 57%. The fluctuating behavior of vegetation, agriculture and water bodies in which the areas decrease and increase over the selected periods is due to natural calamities and migration of the local population. This shows that human influence on the land resources is accelerating and leading to a deterioration of agricultural land. Thus effective agricultural management practices and policies should be carried out at the government level for minimizing land resources degradation by the human-induced impact.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1353
Author(s):  
Hossain Mohammad Arifeen ◽  
Khamphe Phoungthong ◽  
Ali Mostafaeipour ◽  
Nuttaya Yuangyai ◽  
Chumpol Yuangyai ◽  
...  

At present, urbanization is a very common phenomenon around the world, especially in developing countries, and has a significant impact on the land-use/land-cover of specific areas, producing some unwanted effects. Bangladesh is a tightly inhabited country whose urban population is increasing every day due to the expansion of infrastructure and industry. This study explores the land-use/land-cover change detection and urban dynamics of Gazipur district, Bangladesh, a newly developed industrial hub and city corporation, by using satellite imagery covering every 10-year interval over the period from 1990 to 2020. Supervised classification with a maximum likelihood classifier was used to gather spatial and temporal information from Landsat 5 (TM), 7 (ETM+) and 8 (OLI/TIRS) images. The Geographical Information System (GIS) methodology was also employed to detect changes over time. The kappa coefficient ranged between 0.75 and 0.90. The agricultural land was observed to be shrinking very rapidly, with an area of 716 km2 in 2020. Urbanization increased rapidly in this area, and the urban area grew by more than 500% during the study period. The urbanized area expanded along major roads such as the Dhaka–Mymensingh Highway and Dhaka bypass road. The urbanized area was, moreover, concentrated near the boundary line of Dhaka, the capital city of Bangladesh. Urban expansion was found to be influenced by demographic-, economic-, location- and accessibility-related factors. Therefore, similarly to many countries, concrete urban and development policies should be formulated to preserve the environment and, thereby, achieve sustainable development goal (SDG) 11 (sustainable cities and communities).


India is one of the biggest countries and is 7th largest nation in the world; also India is 2nd country in population next to China. The Towns are like trees, both of them grow under natural limits. One of the objectives of any master plan is to guide town development by studying the natural properties of the town border and to determine a suitable direction of town growth. It should include general information for understanding the effective factors on the town’s form. This report is mainly concentrated towards the historic Badami town development to prepare an accurate land use/land cover map on 1:21,000 scale appropriate allocation of land resources of the Badami A need for GIS driven analysis of factors such as urban planning, which in turn create various types of geo-referenced data, GIS was carried out to create, store, edit, visualise, analysis, and to present the data needed for carrying out the allocation of land for meeting various needs of the smart city.After the implementation of the Smart concepts desirable results have obtained and these outputs have the potential to fulfil the need of all the inhabitants without causing any pollution. The outputs of this project would help in sustainable planning to existing town.


2019 ◽  
Vol 8 (2) ◽  
pp. 4614-4621

This paper examines that, with the help of Remotes Sensing (RS) and Geographical Information system (GIS) Land use/Land cover of the town area from period 1975 to 2017 are classified into different classes. The town information is extracted from Toposheet and Remote Sensing Landsat-7 ETM+ images of 1975 to 2017. There are five expansion types are considered during 42 years, including water body, built-up area, forest, Agriculture and exposed Rock. By analyzing the data from the year 1975 to 2017 we found that the natural feature area such as water body, the forest is decreasing continuously and the area of town that is built-up area increase partially etc. Shannon’s Entropy approach identifies the degree of special concentration and dispersion growth, its value is close to 1 which indicates that space distribution is evenly dispersed. According to get the value of statistical Kappa Coefficient which lies in between 0.75 to 0.89 we say that there is accuracy in the requirement of research. Also, in addition to that population for the next three-decade help to define the built-up area of the city, the method used to forecast the population are Arithmetic increase method, Geometric increase method, Incremental increase method, Decreasing rate of growth method and Simple graphical method, this method gives a forecast of urban expansion from the year 2021 to 2041. The Land use/ Land cover changes classification is useful for proper planning, utilization and management of resources. Land use/Land cover changes are contributed to creating community spirit and a properly balanced population structure.


Author(s):  
I Putu Anom Widiarsa ◽  
Gusti Ayu Made Suartika

This article aims at analyzing determining aspects that must be incorporated in to the process of developing a strategy to control land development. It converses this objective by taking the increasing rate of agricultural land conversion in Mangupura urban area, of Badung Regency-Bali, as its case study. The study was carried out using a qualitative approach. The findings demonstrate the driving factors behind such a conversion are classified into four categories, including social, economical, environmental and regulatory forces. Learning from the dynamic of land development of Mangupura area, the study subsequently comes out with a conclusion that for efficiency and success, the strategy to control land use changes has to embrace two basic aspects of: (i) identification and clarification of instruments to regulate spatial changes, and (ii) the allocation of agency/s assigned to carry out the controlling roles. It is further emphasized that attempts to rule spatial development should take both of the aforementioned determining forces and basic aspects influencing the success of the control strategy, into account. Keywords: conversion, agricultural land, land use control and strategy


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


Sign in / Sign up

Export Citation Format

Share Document