scholarly journals Spatially Explicit Reconstruction of Anthropogenic Grassland Cover Change in China from 1700 to 2000

Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 270
Author(s):  
Fan Yang ◽  
Fanneng He ◽  
Shicheng Li

Long-term anthropogenic land use and land cover changes (LULCCs) are regarded as an important component of past global change. The past 300 years have witnessed dramatic changes in LULCC in China, and this has resulted in the large-scale conversion of natural vegetation to agricultural landscapes. Studies of past LULCC in China have mainly focused on cropland and forest; however, estimates of grassland cover remain rare due to the scarcity of grassland-related historical documents. Based on a qualitative analysis of trends in grassland cover in China and their driving forces, we devised different reconstruction methods for grassland cover in eastern and western China and then developed a 10 km database of grassland cover in China for the past 300 years. The grassland area in western China decreased from 295.54 × 106 ha in 1700 to 269.78 × 106 ha in 2000 due to the increase in population and cropland, especially in northeastern China (Heilongjiang, Jilin, and Liaoning), Gan-Ning, and Xinjiang. In eastern China, grassland is degraded secondary vegetation characterized by shrub grassland and meadow grassland, which is scattered in the hills and mountains; its area increased from 7.30 × 106 ha in 1700 to 16.43 × 106 ha in 1950 due to the increase in the degraded land caused by deforestation.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 989
Author(s):  
Jing Qian ◽  
Qiming Zhou ◽  
Xi Chen ◽  
Bo Sun

Investigation of urban expansion can provide a better understanding of the urbanization process and its driving forces, which is critical for environmental management and land use planning. Total of 514 sampling points from the aerial photos and field sampling were applied to assess the image accuracy. A Conversion of Land Use and its Effect at Small Region Extent (CLUE-S) model was established to simulate the urbanization process at the township level in the North Xinjiang Economic Zone (NXEZ) of western China. Historical land use and land cover changes with multi-temporal remote sensing data were retrieved, and the underlying driving forces were explored by training the CLUE-S model. Moreover, future changes in urban development were simulated under different scenarios. Results showed that the overall accuracy reaches larger than 80% for the years of 2002, 2005, and 2007, and the corresponding kappa coefficient is bigger than 0.8. The NXEZ is at a premature development stage compared with urban clusters in eastern China. Before 1999, the driving force in this region was primary industry development. In recent years, secondary industries started to show significance in urbanization. These findings indicate that the industrial base and economic development in the NXEZ are still relatively weak and have not taken a strong leading role. When industry and population become the main driving factors, the regional economy will enter a new stage of leap-forward development, which in turn will stimulate a new round of rapid urbanization.


2017 ◽  
Vol 13 (12) ◽  
pp. 1919-1938 ◽  
Author(s):  
Feng Shi ◽  
Sen Zhao ◽  
Zhengtang Guo ◽  
Hugues Goosse ◽  
Qiuzhen Yin

Abstract. The dominant modes of variability of precipitation for the whole of China over the past millennium and the mechanism governing their spatial structure remain unclear. This is mainly due to insufficient high-resolution proxy records of precipitation in western China. Numerous tree-ring chronologies have recently been archived in publicly available databases through PAGES2k activities, and these provide an opportunity to refine precipitation field reconstructions for China. Based on 479 proxy records, including 371 tree-ring width chronologies, a tree-ring isotope chronology, and 107 drought/flood indices, we reconstruct the precipitation field for China for the past half millennium using the optimal information extraction method. A total of 3631 of 4189 grid points in the reconstruction field passed the cross-validation process, accounting for 86.68 % of the total number of grid points. The first leading mode of variability of the reconstruction shows coherent variations over most of China. The second mode is a north–south dipole in eastern China characterized by variations of the same sign in western China and northern China (except for Xinjiang province). It is likely controlled by the El Niño–Southern Oscillation (ENSO) variability. The third mode is a sandwich triple mode in eastern China including variations of the same sign in western China and central China. The last two modes are reproduced by most of the six coupled climate models' last millennium simulations performed in the framework of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3). In particular, the link of the second mode with ENSO is confirmed by the models. However, there is a mismatch between models and proxy reconstructions in the time development of different modes. This mismatch suggests the important role of internal variability in the reconstructed precipitation mode variations of the past 500 years.


1983 ◽  
Vol 13 (4) ◽  
pp. 539-547 ◽  
Author(s):  
J. R. Blais

The history of spruce budworm (Choristoneurafumiferana (Clem.)) outbreaks for the past 200 to 300 years, for nine regions in eastern Canada, indicates that outbreaks have occurred more frequently in the 20th century than previously. Regionally, 21 outbreaks took place in the past 80 years compared with 9 in the preceding 100 years. Earlier infestations were restricted to specific regions, but in the 20th century they have coalesced and increased in size, the outbreaks of 1910, 1940, and 1970 having covered 10, 25, and 55 million ha respectively. Reasons for the increase in frequency, extent, and severity of outbreaks appear mostly attributable to changes caused by man, in the forest ecosystem. Clear-cutting of pulpwood stands, fire protection, and use of pesticides against budworm favor fir–spruce stands, rendering the forest more prone to budworm attack. The manner and degree to which each of these practices has altered forest composition is discussed. In the future, most of these practices are expected to continue and their effects could intensify, especially in regions of recent application. Other practices, including large-scale planting of white spruce, could further increase the susceptibility of forest stands. Forest management, aimed at reducing the occurrence of extensive fir–spruce stands, has been advocated as a long-term solution to the budworm problem. The implementation of this measure at a time when man's actions result in the proliferation of fir presents a most serious challenge to forest managers.


2014 ◽  
Vol 27 (12) ◽  
pp. 4693-4703 ◽  
Author(s):  
Ping Zhao ◽  
Phil Jones ◽  
Lijuan Cao ◽  
Zhongwei Yan ◽  
Shuyao Zha ◽  
...  

Abstract Using the reconstructed continuous and homogenized surface air temperature (SAT) series for 16 cities across eastern China (where the greatest industrial developments in China have taken place) back to the nineteenth century, the authors examine linear trends of SAT. The regional-mean SAT over eastern China shows a warming trend of 1.52°C (100 yr)−1 during 1909–2010. It mainly occurred in the past 4 decades and this agrees well with the variability in another SAT series developed from a much denser station network (over 400 sites) across this part of China since 1951. This study collects population data for 245 sites (from these 400+ locations) and split these into five equally sized groups based on population size. Comparison of these five groups across different durations from 30 to 60 yr in length indicates that differences in population only account for between 9% and 24% of the warming since 1951. To show that a larger urbanization impact is very unlikely, the study additionally determines how much can be explained by some large-scale climate indices. Anomalies of large-scale climate indices such as the tropical Indian Ocean SST and the Siberian atmospheric circulation systems account for at least 80% of the total warming trends.


2021 ◽  
Author(s):  
Christopher ODell ◽  
Annmarie Eldering ◽  
Michael Gunson ◽  
David Crisp ◽  
Brendan Fisher ◽  
...  

<p>While initial plans for measuring carbon dioxide from space hoped for 1-2 ppm levels of accuracy (bias) and precision in the CO<sub>2</sub> column mean dry air mole fraction (XCO<sub>2</sub>), in the past few years it has become clear that accuracies better than 0.5 ppm are required for most current science applications.  These include measuring continental (1000+ km) and regional scale (100s of km) surface fluxes of CO<sub>2</sub> at monthly-average timescales.  Considering the 400+ ppm background, this translates to an accuracy of roughly 0.1%, an incredibly challenging target to hit. </p><p>Improvements in both instrument calibration and retrieval algorithms have led to significant improvements in satellite XCO<sub>2</sub> accuracies over the past decade.  The Atmospheric Carbon Observations from Space (ACOS) retrieval algorithm, including post-retrieval filtering and bias correction, has demonstrated unprecedented accuracy with our latest algorithm version as applied to the Orbiting Carbon Observatory-2 (OCO-2) satellite sensor.   This presentation will discuss the performance of the v10 XCO<sub>2</sub> product by comparisons to TCCON and models, and showcase its performance with some recent examples, from the potential to infer large-scale fluxes to its performance on individual power plants.  The v10 product yields better agreement with TCCON over land and ocean, plus reduced biases over tropical oceans and desert areas as compared to a median of multiple global carbon inversion models, allowing better accuracy and faith in inferred regional-scale fluxes.  More specifically, OCO-2 has single sounding precision of ~0.8 ppm over land and ~0.5 ppm over water, and RMS biases of 0.5-0.7 ppm over both land and water.  Given the six-year and growing length of the OCO-2 data record, this also enables new studies on carbon interannual variability, while at the same time allowing identification of more subtle and temporally-dependent errors.  Finally, we will discuss the prospects of future improvements in the next planned version (v11), and the long-term prospects of greenhouse gas retrievals in the coming years. </p><p> </p>


2015 ◽  
Vol 55 (7) ◽  
pp. 856 ◽  
Author(s):  
M. R. Scarsbrook ◽  
A. R. Melland

The scale and intensity of dairy farming can place pressure on our freshwater resources. These pressures (e.g. excessive soil nutrient concentrations and nitrogen excretion) can lead to changes in the levels of contaminants in waterways, altering the state and potentially affecting the uses and values society ascribes to water. Resource management involves putting in place appropriate responses to address water-quality issues. In the present paper, we highlight trends in the scale and extent of dairying in Australia and New Zealand and describe water-quality pressures, state, impacts and responses that characterise the two countries. In Australia and New Zealand, dairy farming has become increasingly intensive over the past three decades, although the size of Australia’s dairy herd has remained fairly static, while New Zealand’s herd and associated excreted nitrogen loads have nearly doubled. In contrast, effluent management has been improved, and farm waterways fenced, in part to reduce pressure on freshwater. However, both countries show a range of indicators of degraded water-quality state. Phosphorus and nitrogen are the most common water-quality indicators to exceed levels beyond the expected natural range, although New Zealand also has a significant percentage of waterways with faecal contaminants beyond acceptable levels for contact recreation. In New Zealand, nitrate concentrations in waterways have increased, while phosphorus and suspended sediment concentrations have generally decreased over the past decade. Water quality in some coastal estuaries and embayments is of particular concern in Australia, whereas attention in New Zealand is on maintaining quality of high-value lakes, rivers and groundwater resources, as well as rehabilitating waterbodies where key values have been degraded. In both Australia and New Zealand, water-quality data are increasingly being collated and reported but in Australia long-term trends across waterbodies, and spatially comprehensive groundwater-quality data have not yet been reported at national levels. In New Zealand, coastal marine systems, and particularly harbours and estuaries, are poorly monitored, but there are long-term monitoring systems in place for rivers, groundwater and lakes. To minimise pressures on water quality, there is a high reliance on voluntary and incentivised practice change in Australia. In New Zealand, industry-led practice change has been important over the past decade, but regulated environmental limits for dairy farmers are increasing. Dairy industries in both countries have set targets for reducing pressures through sustainability frameworks and accords. To address future drivers such as climate change and increasing domestic and international market demand for sustainability credentials, definitions of values and appropriate targets for waterbodies draining agricultural landscapes will be required. Environmental limits (both natural and societal) will constrain future growth opportunities for dairying and research into continued growth within limits remains a priority in both countries.


2017 ◽  
Vol 13 (3) ◽  
pp. 267-301 ◽  
Author(s):  
Lilo M. K. Henke ◽  
F. Hugo Lambert ◽  
Dan J. Charman

Abstract. The El Niño–Southern Oscillation (ENSO) is the most important source of global climate variability on interannual timescales and has substantial environmental and socio-economic consequences. However, it is unclear how it interacts with large-scale climate states over longer (decadal to centennial) timescales. The instrumental ENSO record is too short for analysing long-term trends and variability and climate models are unable to accurately simulate past ENSO states. Proxy data are used to extend the record, but different proxy sources have produced dissimilar reconstructions of long-term ENSO-like climate change, with some evidence for a temperature–precipitation divergence in ENSO-like climate over the past millennium, in particular during the Medieval Climate Anomaly (MCA; AD  ∼  800–1300) and the Little Ice Age (LIA; AD  ∼  1400–1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using weighting based on empirical orthogonal function (EOF) to create two new large-scale reconstructions of ENSO-like climate change derived independently from precipitation proxies and temperature proxies. The method is developed and validated using model-derived pseudo-proxy experiments that address the effects of proxy dating error, resolution, and noise to improve uncertainty estimations. We find no evidence that temperature and precipitation disagree over the ENSO-like state over the past millennium, but neither do they agree strongly. There is no statistically significant difference between the MCA and the LIA in either reconstruction. However, the temperature reconstruction suffers from a lack of high-quality proxy records located in ENSO-sensitive regions, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite, and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records and establish the long-term stability of this important mode of climatic variability.


2018 ◽  
Vol 31 (9) ◽  
pp. 3609-3624 ◽  
Author(s):  
N. Freychet ◽  
S. F. B. Tett ◽  
G. C. Hegerl ◽  
J. Wang

Abstract Large-scale and persistent heat waves affecting central-eastern China are investigated in 40 different simulations of sea surface temperature driven global atmospheric models. The different models are compared with results from reanalysis and ground station datasets. It is found that the dynamics of heat-wave events is well reproduced by the models. However, they tend to produce too-persistent heat-wave events (lasting more than 20 days), and several hypotheses were tested to explain this bias. The daily variability of the temperatures or the seasonal signal did not explain the persistence. However, interannual variability of the temperatures in the models, and especially the sharp transition in the mid-1990s, has a large impact on the duration of heat waves. A filtering method was applied to select the models closest to the observations in terms of events persistence. The selected models do not show a significant difference from the other models for the long-term trends. Thus, the bias on the duration of the events does not impact the reliability of the model positive trends, which is mainly controlled by the changes in mean temperatures.


Sign in / Sign up

Export Citation Format

Share Document