scholarly journals Investigation of Ageing in Bitumen Using Fluorescence Spectrum

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1325 ◽  
Author(s):  
Ning Tang ◽  
Yu-Li Yang ◽  
Mei-Ling Yu ◽  
Wen-Li Wang ◽  
Shi-Yue Cao ◽  
...  

Bitumen ageing is a very complex process and poses a threat to the performance of pavements. In the present work, a fluorescence spectrophotometer was employed to research the change rule of components and the structure of bitumen after the ageing process. The Thin Film Oven Test (TFOT) and Ultraviolet (UV) light treatment were carried out as ageing methods. The properties and components of bitumen were tested before and after aging. The 2D and 3D fluorescence spectra of bitumen were analyzed. The vector of fluorescence peak was calculated for evaluating the ageing process. The results indicated that the ideal concentration of bitumen- tetrachloromethane solution was 0.1 g/L or smaller for avoiding the fluorescence quenching. The coordinates of fluorescent peak appeared “blue-shift” after ageing due to the change of aromatics. In addition, bitumen has already occurred serious ageing when the magnitude of a vector is more than 36.

2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1080
Author(s):  
Clever Aparecido Valentin ◽  
Marcelo Kobelnik ◽  
Yara Barbosa Franco ◽  
Fernando Luiz Lavoie ◽  
Jefferson Lins da Silva ◽  
...  

The use of polymeric materials such as geosynthetics in infrastructure works has been increasing over the last decades, as they bring down costs and provide long-term benefits. However, the aging of polymers raises the question of its long-term durability and for this reason researchers have been studying a sort of techniques to search for the required renewal time. This paper examined a commercial polypropylene (PP) nonwoven geotextile before and after 500 h and 1000 h exposure to ultraviolet (UV) light by performing laboratory accelerated ultraviolet-aging tests. The state of the polymeric material after UV exposure was studied through a wide set of tests, including mechanical and physical tests and thermoanalytical tests and scanning electron microscopy analysis. The calorimetric evaluations (DSC) showed distinct behaviors in sample melting points, attributed to the UV radiation effect on the aged samples. Furthermore, after exposure, the samples presented low thermal stability in the thermomechanical analysis (TMA), with a continuing decrease in their thicknesses. The tensile tests showed an increase in material stiffness after exposition. This study demonstrates that UV aging has effects on the properties of the polypropylene polymer.


1993 ◽  
Vol 18 (5-6) ◽  
pp. 437-443 ◽  
Author(s):  
Mark S. Bauer ◽  
James Kurtz ◽  
Andrew Winokur ◽  
Jennifer Phillips ◽  
Lisa B. Rubin ◽  
...  

Open Physics ◽  
2006 ◽  
Vol 4 (3) ◽  
Author(s):  
Abbas Al-Wattar ◽  
Baha Chiad ◽  
Wesam Twej ◽  
Sarmed Al-Awadi

AbstractThe solid host of a laser dye modifies its spectroscopic properties with respect to its liquid host. During the Sol-Gel process the dye molecules suffer from changing their environment. Two parameters affect this matter, the change in the concentration due to the evaporation of the solvent (drying) and the caging of dye molecules inside the pores or attachment to the silica network. Rhodamine 6G absorption and fluorescence spectra with different concentrations, during Sol-Gel time processing, have been studied. Both, absorption and fluorescence spectra of the dye in the solid host, for different concentrations, show a blue-shift relative to its liquid phase.


2011 ◽  
Vol 121-126 ◽  
pp. 3945-3949 ◽  
Author(s):  
Shih Heng Tung ◽  
Jui Chao Kuo ◽  
Ming Hsiang Shih ◽  
Wen Pei Sung

In recent years, 2D digital image correlation method (DIC) has been widely used in the measurement of plane strain. However, out-of-plane displacement could be induced during the loading and it would affect the measurement accuracy. Thus, a 3D measurement is necessary. This study utilizes a simplified 3D DIC to measure the geometry of an object before and after deformation. Then the finite element concept is involved to determine the strain after deformation. A flat plate specimen with in-plane and out-of-plane displacement is observed. Both 2D and 3D DIC are used to analyze the strain. The results show that using 3D DIC to measure strain is feasible and with a very good accuracy.


1996 ◽  
Vol 59 (3) ◽  
pp. 319-321 ◽  
Author(s):  
SUSAN S. SUMNER ◽  
EVA A. WALLNER-PENDLETON ◽  
GLENN W. FRONING ◽  
LA VERNE E. STETSON

Ultraviolet radiation (UV) was effective in destroying Salmonella typhimurium on agar plates and poultry skin. Agar plates inoculated with varying numbers of colony-forming units (CFU) of S. typhimurium (1.2 × 102 to 1.7 × 109) were subjected to different doses of UV light to determine optimal killing. Poultry skin was also inoculated with varying CFU of S. typhimurium per 2 cm2 of skin and subjected to UV light. UV light treatment of inoculated agar plates revealed almost complete elimination (99.9%) of S. typhimurium at 2,000 μW · s · cm−2. Bacterial reduction was less effective on the surface of poultry skin when a 80.5% reduction in S. typhimurium was obtained at 2,000 μW · s · cm−2.


1970 ◽  
Vol 5 (2) ◽  
pp. 213-220 ◽  
Author(s):  
H. Witt ◽  
A. Rheude ◽  
H. Heusinger

Author(s):  
Fairooz Kareem ◽  
Mahasin Al-Kadhemy ◽  
Asrar Saeed

Absorption and fluorescence spectroscopy techniques were applied to investigate the photophysical characteristics of acridine orange (AO) dye in solvents that included distilled water, dimethyl sulfoxide (DMSO), acetone and ethanol in various concentrations (1×10-4–1×10-6) M. All of the samples were served at room temperature. The relationships between various parameters describing the strength of optical transitions in atoms and molecules were reviewed. This study expresses various viewpoints by describing how concentration and solvent affect the dye's absorption and fluorescence spectra. The absorption spectra of AO exhibit a band at (490 nm), except for DMSO, which shifts more towards red by 5 nm. The fluorescence spectra show a blue shift in AO aqueous solution around 6 nm until (0.5×10-4) M, followed by a red shift at around 7 nm at (1×10-6) M. There is a blue shift in (1×10-5) M for DMSO at around 4 nm, then a 10 nm red shift in higher concentrations as well as a 9 nm red shift in acetone and 6 nm in ethanol. Adding magnesium oxide nanoparticles (MgO NPs) quenched AO in both absorption and fluorescence spectra, whereas maximum fluorescence and intensity increased when aluminium oxide nanoparticles (Al2O3 NPs) were added to the solution. KEYWORDS Laser dye, absorption spectrum, fluorescence spectrum, MgO NPs, Al2O3 NPs


2011 ◽  
Vol 11 (3) ◽  
pp. 253-257 ◽  
Author(s):  
Winarti Andayani ◽  
Agustin N M Bagyo

Degradation of humic acid in aqueous solution containing TiO2 coated on ceramics beads under irradiation of 254 nm UV light has been conducted in batch reactor. The aim of this experiment was to study photocatalytic degradation of humic acid in peat water. The irradiation of the humic acid in aqueous solution was conducted in various conditions i.e solely uv, in the presence of TiO2-slurry and TiO2 beads. The color intensity, humic acid residue, conductivity and COD (chemical oxygen demand) of the solution were analyzed before and after irradiation.  The compounds produced during photodegradation were identified using HPLC. The results showed that after photocatalytic degradation, the color intensity and the COD value of the solution decreased, while the conductivity of water increased indicating mineralization of the peat water occurred. In addition, oxalic acid as the product of degradation was observed.


Sign in / Sign up

Export Citation Format

Share Document