scholarly journals Phase Transformation and Morphology Evolution of Ti50Cu25Ni20Sn5 during Mechanical Milling

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1769 ◽  
Author(s):  
Dora Janovszky ◽  
Ferenc Kristaly ◽  
Tamas Miko ◽  
Adam Racz ◽  
Maria Sveda ◽  
...  

Nanocrystalline/amorphous powder was produced by ball milling of Ti50Cu25Ni20Sn5 (at.%) master alloy. Both laser diffraction particle size analyzer and scanning electron microscope (SEM) were used to monitor the changes in the particle size as well as in the shape of particles as a function of milling time. During ball milling, the average particle size decreased with milling time from >320 µm to ~38 µm after 180 min of milling. The deformation-induced hardening and phase transformation caused the hardness value to increase from 506 to 779 HV. X-ray diffraction (XRD) analysis was used to observe the changes in the phases/amorphous content as a function of milling time. The amount of amorphous fraction increased continuously until 120 min milling (36 wt % amorphous content). The interval of crystallite size was between 1 and 10 nm after 180 min of milling with 25 wt % amorphous fractions. Cubic Cu(Ni,Cu)Ti2 structure was transformed into the orthorhombic structure owing to the shear/stress, dislocations, and Cu substitution during the milling process.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Indrawati Patabang ◽  
Syahruddin Kasim ◽  
Paulina Taba

Silver nanoparticles have been synthesized using kluwak leaf extract (Pangium edule Reinw) as bioreductor and antioxidant activity assay. The nanoparticles formed were monitored by observing UV-Vis absorption and characterized by using FTIR, PSA, XRD and SEM instruments. The result of functional group characterization with FTIR show that the functional groups OH, C = O, C-O and CH2 act as Ag+ reducing agent. The size of silver nanoparticles was determined by using Particle Size Analyzer (PSA) and the result show average particle size distribution of 93.2 nm. Morphology of AgNp were observed by Scanning Electron Microscope (SEM) and X-Ray Difraction (XRD) analysis show result of 51,78 nm. The antioxidant activity was shown by in kluwak leaf extract and silver nanoparticles with IC50 values respectively 831,33 ppm dan 1493,09 ppm.


2014 ◽  
Vol 1010-1012 ◽  
pp. 961-965
Author(s):  
Jian Qiang Xiao ◽  
Guo Wei He ◽  
Yan Jin Hu

Bauxite waste sludge as a raw material, the use of reverse chemical coprecipitation synthesize Fe3O4. Researching temperature, precipitation concentration, aging time and Fe2+/Fe3+ molar ratio effect on the particle size, morphology. Optimal experimental conditions: temperature 70 °C, the precipitant NaOH mass ratio of 10%, aging time 3h, Fe2+/Fe3+ molar ratio of 2:3. Test methods using a laser particle size analyzer, XRD analysis of the products were characterized, the product is Fe3O4, the average particle size of 0.11mm.


2020 ◽  
Vol 989 ◽  
pp. 199-203
Author(s):  
Ivan N. Egorov ◽  
Nikolay Ya. Egorov ◽  
Viktor P. Kryzhanovsky

The paper presents the results of experimental studies of strontium hexa-ferrite average particle size and structural characteristics changes during milling process. Coarse strontium hexaferrite was milled in beater mill, without and with electromagnetic effect. Electromagnetic effect was produced by constant and alternating gradient magnetic fields with mutually perpendicular induction lines. Particle sizes were measured by microscopic methods, and structural characteristics were calculated by processing of X-ray diffractograms. Diffraction studies showed that during milling process, both with and without electromagnetic effect, the most intensive changes of coherent scattering region (CSR) sizes, dislocation densities and relative deformation of particulate material occur at earlier stage of milling. At this stage the speed of average particle size decrease is maximal. At later stage both average particle size and structural characteristic changes correlate and have asymptotic character.


2016 ◽  
Vol 846 ◽  
pp. 172-176 ◽  
Author(s):  
Choon Siong Lim ◽  
Pao Ter Teo ◽  
Nurulakmal Mohd Sharif

Significant quantity of solid wastes, especially electric arc furnace (EAF) slag is generated by the growing Malaysia’s steel industries. Recycling them offer a more sustainable solution and also added value to the solid wastes. Therefore, in this project, an attempt was made to recycle the EAF slag waste as one of raw materials in ceramic tile. In our preliminary study of assessing the suitability of the slag in ceramic tile, it was found that at fixed firing temperature of 1150°C, increasing of EAF slag added (wt.%) would deteriorate the properties of tile produced. Meanwhile, introduce an additional silica and feldspar led to better properties of the tile. Optimum composition of the ceramic tile was found to be 40 wt.% EAF slag – 30 wt.% – 20 wt.% silica – 10 wt.% feldspar. Hence, this study aims to further improve the properties of the tile by varying EAF slag’s milling time (15 minutes and 30 minutes) and firing temperature (1075°C, 1100°C, 1125°C and 1150°C). Results obtained show that as milling time was increased from 15 minutes to 30 minutes, average particle size, X50 of the slag was reduced from 53 µm to 3 µm. When the particles size of EAF slag added was smaller, the tile had a higher modulus of rupture (MOR), higher bulk density, lower apparent porosity and water absorption. The improved MOR was due to increase in total anorthite and wollastonite crystalline phases (wt.%) in the tile. The MOR was the highest at firing temperature of 1100°C for 3µm EAF slag particle whereas for larger particle size (53µm), the MOR was highest at 1150°C. This suggests possible improvement in reduction of firing temperature when smaller particles are used.


2013 ◽  
Vol 829 ◽  
pp. 778-783 ◽  
Author(s):  
Mohsen Razi ◽  
Ali Ghasemi ◽  
Gholam Hossein Borhani

Nanostructured Fe65Co35 alloy powders were fabricated by mechanical alloying in an attritor mill with different milling times. The milling process carried out in speed of 350 rpm, with 20:1 ball to powder weight ratio and under argon protective atmosphere. A continuous cooling system applied to avoid increasing temperature during the milling. The effect of milling time on structural and magnetic properties investigated by X-ray diffraction, scanning electron microscopy and vibration sample magnetometer. According to the obtained results, nanostructured Fe65Co35 solid solution powders resulted with an average particle size of 400 nm and crystallite size of 6.8 nm by milling for 20 hours. With increasing the milling time, the lattice parameter decreased and the lattice strain increased for Fe65Co35 powders. The maximum saturation magnetization with 1311 emu/cc value and the minimum coercivity with 22 Oe value occurs after milling for 15 hours.


2018 ◽  
Vol 3 (2) ◽  
pp. 82 ◽  
Author(s):  
Asep Bayu Dani Nandiyanto ◽  
Riezqa Andika ◽  
Muhammad Aziz ◽  
Lala Septem Riza

Analysis of ball-milling process under various conditions (i.e. working volume, milling time, and material load) on the material properties (i.e. chemical composition, as well as particle size and morphology), product yield, and electricity consumption was investigated. Turmeric (curcuma longa) was used as a model of size-reduced organic material due to its thermally and chemically stability, and fragile. Thus, clear examination on the size-reduction phenomenon during the milling process can be done without considering any reaction as well as time-consuming process. Results showed that working volume is prospective to control the characteristics of product. Working volume manages the shear stress and the collision phenomena during the process. Specifically, the lower working volume led to the production of particles with blunt-edged morphology and sizes of several micrometers. Although working volume is potentially used for managing the final particle size, this parameter has a direct impact to the product yield and electricity consumption. Adjustment of the milling time is also important due to its relation to breaking material and electrical consumption.


2003 ◽  
Vol 17 (26) ◽  
pp. 1399-1403 ◽  
Author(s):  
T. BALAJI ◽  
Y. PURUSHOTHAM ◽  
R. GOVINDAIAH ◽  
M. K. SHARMA ◽  
ARBIND KUMAR ◽  
...  

The oxygen concentration of tantalum powder is critical for the fabrication of solid electrolyte tantalum capacitors. In the present paper an attempt has been made to study the influence of milling time, milling speed (rotations per minute (RPM)) of the vibratory disc mill and average particle size of tantalum powder on oxygen concentrations. It was observed that milling time is directly related to the oxygen content of the powder mass. However, the rotational speed of the mill also contributes to the particle size distribution and ambience gas content of the particles.


2012 ◽  
Vol 05 ◽  
pp. 464-471 ◽  
Author(s):  
MAHMOOD SAMEEZADEH ◽  
HASSAN FARHANGI ◽  
MASOUD EMAMY

Nano-sized intermetallic powders have received great attention owing to their property advantages over conventional micro-sized counterparts. In the present study nano-sized MoSi 2 powder has been produced successfully from commercially available MoSi 2 (3 μm) by a mechanical milling process carried out for a period of 100 hours. The effects of milling time on size and morphology of the powders were studied by SEM and TEM and image analyzing system. The results indicate that the as-received micrometric powder with a wide size distribution of irregular shaped morphology changes to a narrow size distribution of nearly equiaxed particles with the progress of attrition milling up to 100 h, reaching an average particle size of 71 nm. Structural evolution of milled samples was characterized by XRD to determine the crystallite size and lattice microstrain using Williamson-Hall method. According to the results, the crystallite size of the powders decreases continuously down to 23 nm with increasing milling time up to 100 h and this size refinement is more rapid at the early stages of the milling process. On the other hand, the lattice strain increases considerably with milling up to 65 h and further milling causes no significant changes of lattice strain.


2005 ◽  
Vol 475-479 ◽  
pp. 2403-2406 ◽  
Author(s):  
Sang Mok Lee ◽  
Hoon Jae Park ◽  
Seung Soo Kim ◽  
Tae Hoon Choi ◽  
E.Z. Kim ◽  
...  

Reducing the particle size of drug materials down to submicron is an important matter in pharmaceutical industry. Cryogenic milling technology is one of the mechanical milling processes, which is mostly utilized in refining grain size of metal and ceramics at extremely low temperature environment. This technique has not been readily studied in application to medical and biotechnology. This paper, therefore, describes the application of cryogenic milling process to reduce particle size of Ibuprofen. The shape and size of the Ibuprofen particle before and after the cryogenic ball milling process were analyzed. XRD analysis was performed to examine a change in crystallinity of Ibuprofen by the cryogenic ball milling process. The results showed that the size of Ibuprofen particles was reduced to 1/10 or less of its initial size. The results also showed that the degree of crystallinity of Ibuprofen was slightly reduced after cryogenic ball milling with nitrogen.


2018 ◽  
Vol 16 (2) ◽  
pp. 117 ◽  
Author(s):  
Muhammad Fajri Romadhan ◽  
Nurgaha Edhi Suyatma ◽  
Fahim Muchammad Taqi

The aim of this study was to synthesize and characterize Zinc oxide nanoparticles (ZnO-NPs) prepared by precipitation method. Zinc nitrate and sodium hydroxide was used as starting materials with biopolymer pectin as capping agent. ZnO-NPs were synthesized at three levels of temperatures (60, 80 and 100 °C) without or with calcinations (500 °C). Particle size analyzer (PSA) analysis results showed that the samples without calcination (T60, T80 and T100) having an average particle size respectively 105.13, 78.53, and 76.43 nm, whereas at the samples by calcination (T60C, T80C and T100C) each have average particle size of 88.73, 44.30 and 543.77 nm. The results showed that preparation of ZnO-NPs by using heating at 80 °C followed with calcinations at 500 °C (T80C) produced the smallest size. T80C samples further were analyzed using XRD, SEM and the antimicrobial activity compared with the ZnO-NPs commercials. XRD analysis confirmed that ZnO-NPs were successfully obtained and have form of pure nanostructure. SEM analysis showed that ZnO-NPs obtained has a spherical shape. Furthermore, this ZnO-NPs (T80C) has a better antimicrobial activity compared than commercial ZnO-NPs in market.


Sign in / Sign up

Export Citation Format

Share Document