scholarly journals Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2040 ◽  
Author(s):  
Ling Wang ◽  
Weijun Hong ◽  
Li Deng ◽  
Shufang Li ◽  
Chen Zhang ◽  
...  

Driven by the continuous demand for system integration and device miniaturization, integrating multiple diversified functions into a single metasurface hybridized with the tunable metaparticle is highly demanding at terahertz (THz) range. However, up to now, because of the limitation of the tunable metaparticle at terahertz range, most of the metasurfaces feature a single function only or process similar functionalities at a single frequency. A reconfigurable multifunctional metasurface which can realize the switch of transmission and reflection and manipulate the linearized polarization state of electromagnetic waves simultaneously over a controllable terahertz frequency range based on the vanadium dioxide was designed for the first time in the paper. The numerical result demonstrates the validity of the appropriately designed metasurface. Simulation results show that the reconfigurable and multifunctional performance of this metasurface can be acquired over 1.59 THz to 1.74 THz without re-optimizing or re-fabricating structures, which effectively extends the operating frequencies. The proposed metasurface holds potential for electromagnetic wave manipulation and this study can motivate the realization of the wideband multifunctional metasurface and the software-driven reconfigurable metasurface at terahertz frequencies.

Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 431 ◽  
Author(s):  
Wen-Jen Lee ◽  
Yong-Han Chang

Vanadium dioxide (VO2) is a multifunctional material with semiconductor-to-metal transition (SMT) property. Organic vanadium compounds are usually employed as ALD precursors to grow VO2 films. However, the as-deposited films are reported to have amorphous structure with no significant SMT property, therefore a postannealing process is necessary for converting the amorphous VO2 to crystalline VO2. In this study, an inorganic vanadium tetrachloride (VCl4) is used as an ALD precursor for the first time to grow VO2 films. The VO2 film is directly crystallized and grown on the substrate without any postannealing process. The VO2 film displays significant SMT behavior, which is verified by temperature-dependent Raman spectrometer and four-point-probing system. The results demonstrate that the VCl4 is suitably employed as a new ALD precursor to grow crystallized VO2 films. It can be reasonably imagined that the VCl4 can also be used to grow various directly crystallized vanadium oxides by controlling the ALD-process parameters.


Author(s):  
Dmytro Vovchuk ◽  
Serhii Haliuk ◽  
Leonid Politanskyy

In the paper the development of the components of communication means is considered based on the wire metastructures. This approach is novel and quite promising due to the metamaterials provides new opportunities for the radio engineering devices such as antennas, absorbers etc. First of all it makes possible decreasing of the dimensions of devices while the characteristics stay the same or better. Here the artificially created metastructure that consists of parallel metallic wires and characterizes by a negative electric permittivity was investigated. The possibility of broadband power transfer of electromagnetic waves was demonstrated. Also, at first time, the investigation of possible signal distortions due to wave propagation through the wire medium (WM) slab was performed via analyzing of spectral characteristics. The obtained results allow applying of WM to power transfer in wide frequency range (not only at frequencies of Fabry-Perot resonant) and enhancement of weak source propagation as well as to antennas constructions due to the absence of signal distortions. One of the promising applications of such structures is the possibility of realizing of flexible screens with nanometer thickness and high resolution.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bilawal Khan ◽  
Babar Kamal ◽  
Sadiq Ullah ◽  
Imran Khan ◽  
Jawad Ali Shah ◽  
...  

Abstract The manipulation of polarization state of electromagnetic waves is of great importance in many practical applications. In this paper, the reflection characteristics of a thin and dual-band metasurface are examined in the microwave frequency regime. The metasurface consists of a 22 × 22 element array of periodic unit cells. The geometry of the unit cell consists of three layers, including a 45° inclined dipole shape metal patch on top, which is backed by a 1.6 mm thick FR-4 substrate in the middle, and a fully reflective metallic mirror at the bottom. The proposed surface is exposed to horizontally (x) or vertically (y) polarized plane waves and the co and cross polarization reflection coefficients of the reflected waves are investigated experimentally in the 6–26 GHz frequency range. The metasurface is designed to convert incident waves of known polarization state (horizontal or vertical) to orthogonal polarization state (vertical and horizontal) in two distinct frequency bands, i.e. 7.1–8 GHz and 13.3–25.8 GHz. In these two frequency bands the simulated and experimental results are in good agreement. The polarization conversion ratio (PCR) of the surface is greater than 95% in the targeted frequency bands. A detailed parametric analysis of the metasurface is also discussed in this work and it has been estimated that the surface has the additional ability to convert linearly polarized waves to circularly polarized waves at several distinct frequencies. The proposed metasurface can be utilized in sensor applications, stealth technology, electromagnetic measurements, and antennas design.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1135 ◽  
Author(s):  
Ning Xu ◽  
Yaoyao Liang ◽  
Yuan Hao ◽  
Min Mao ◽  
Jianping Guo ◽  
...  

Multifunctional metasurfaces play an important role in the development of integrated optical paths. However, some of the realizations of current multifunctional metasurface devices depend on polarization selectivity, and others change the polarization state of the outgoing light. Here, based on vanadium dioxide (VO2) phase change material, a strategy to design a meta-duplex-lens (MDL) is proposed and numerical simulation calculations demonstrate that at low temperature (about 300 K), VO2 behaves as a dielectric so that the MDL can act as a transmission lens (transmission efficiency of 87.6%). Conversely, when VO2 enters the metallic state (about 355 K), the MDL has the ability to reflect and polymerize electromagnetic waves and works as a reflection lens (reflection efficiency of 85.1%). The dielectric waveguide and gap-surface plasmon (GSP) theories are used in transmission and reflection directions, respectively. In order to satisfy the coverage of the phase gradient in the range of 2π in both cases, we set the antenna as a nanopillar with a high aspect ratio. It is notable that, via symmetrical antennas acting in concert with VO2 phase change material, the polarization states of both the incident light and the outgoing light are not changed. This reversible tuning will play a significant role in the fields of imaging, optical storage devices, communication, sensors, etc.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Touseef Habib ◽  
Nutan Patil ◽  
Xiaofei Zhao ◽  
Evan Prehn ◽  
Muhammad Anas ◽  
...  

Abstract Here we report for the first time that Ti3C2Tx/polymer composite films rapidly heat when exposed to low-power radio frequency fields. Ti3C2Tx MXenes possess a high dielectric loss tangent, which is correlated with this rapid heating under electromagnetic fields. Thermal imaging confirms that these structures are capable of extraordinary heating rates (as high as 303 K/s) that are frequency- and concentration-dependent. At high loading (and high conductivity), Ti3C2Tx MXene composites do not heat under RF fields due to reflection of electromagnetic waves, whereas composites with low conductivity do not heat due to the lack of an electrical percolating network. Composites with an intermediate loading and a conductivity between 10–1000 S m−1 rapidly generate heat under RF fields. This finding unlocks a new property of Ti3C2Tx MXenes and a new material for potential RF-based applications.


1988 ◽  
Vol 129 ◽  
pp. 551-552
Author(s):  
G. Petit ◽  
J. F. Lestrade ◽  
C. Boucher ◽  
F. Biraud ◽  
A. Rius ◽  
...  

The GRIG-2 geodetic VLBI experiment was conducted in 1985, linking for the first time South America, Europe and Africa. At the single frequency band of 1.66 GHz which was used, the monitoring of the ionosphere is a critical aspect and several predictions of Total Electron Content (TEC) were used. One of them is derived from dual band Doppler observations of TRANSIT satellites, which were simultaneously conducted. The influence of these models on the solution is presented, with comparisons with other VLBI solutions. Decimetric accuracy has been achieved.


2014 ◽  
Vol 778-780 ◽  
pp. 871-874 ◽  
Author(s):  
Wolfgang Bergner ◽  
Roland Rupp ◽  
Uwe Kirchner ◽  
Daniel Kueck

This paper presents for the first time a 650V SiC JFET switch. Although this application class is highly competitive and occupied by Silicon devices the characterization data show unique features which make the SiC switch an outstanding option for future system integration.


Open Physics ◽  
2010 ◽  
Vol 8 (3) ◽  
Author(s):  
Yury Kravtsov ◽  
Bohdan Bieg

AbstractPolarization properties of electromagnetic waves, double-passed through magnetized plasma, are studied. Analyses are performed in the case of non-interacting normal modes, propagating in homogeneous and weakly inhomogeneous plasmas, and for three kinds of reflectors: metallic plane, 2D corner retro-reflector (2D-CR), and cubic corner retro-reflector (CCR). It is shown that an electromagnetic wave, reflected from a metallic plane and from a CCR, contains only “velocity-preserving” channels, whose phases are doubled in comparison with those of a single-passage propagation. At the same time, an electromagnetic wave reflected from a 2D-CR is shown to contain both “velocity-preserving” and “velocity-converting” channels, the latter converting the fast wave into the slow one and vice-versa. One characteristic feature of “velocity-converting” channels is that they reproduce the initial polarization state near the source, which might be of practical interest for plasma interferometry. In the case of circularly polarized modes, “velocity-preserving” channels completely disappear, and only “velocity-converting” channels are to be found.


2014 ◽  
Vol 02 (02) ◽  
pp. 1440008 ◽  
Author(s):  
LONGQING CONG ◽  
JIANQIANG GU ◽  
ZHEN TIAN ◽  
RANJAN SINGH ◽  
JIAGUANG HAN ◽  
...  

As the potential applications of terahertz science and technology become extremely important, there is an increasing demand for improved terahertz optical components. One of such devices on demand is the class of polarization control devices. Recently, metasurfaces have emerged as designer structures with excellent control, design flexibility, and multifaceted functionalities. Metamaterials offer fascinating prospects for manipulating the polarization state of terahertz waves. Here, we discuss different metamaterial device designs that exhibit properties of perfect linear polarization rotation and linear to either linear or circular polarization conversion at narrowband as well as broadband terahertz frequencies.


Sign in / Sign up

Export Citation Format

Share Document