scholarly journals Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1642 ◽  
Author(s):  
Matthew J. Reich ◽  
Aubrey L. Woern ◽  
Nagendra G. Tanikella ◽  
Joshua M. Pearce

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved compression tests were used to determine the mechanical properties of PC and were compared with filament printing and the bulk virgin material. The results showed the tensile strength of parts manufactured from the recycled PC particles (64.9 MPa) were comparable to that of the commercial filament printed on desktop (62.2 MPa) and large-format (66.3 MPa) 3D printers. Three case study applications were investigated: (i) using PC as a rapid molding technology for lower melting point thermoplastics, (ii) printed parts for high temperature applications, and (iii) printed parts for high-strength applications. The results show that recycled PC particle-based 3D printing can produce high-strength and heat-resistant products at low costs.

Author(s):  
Seyed Hamid Reza Sanei ◽  
Zack Lash ◽  
Josh Servey ◽  
Frank Gardone ◽  
Chetan P. Nikhare

Abstract 3D printed composites is a relatively new and untested market in the composites industry. 3D printing in general is becoming a widely used manufacturing method because of its ease, versatile capabilities, and consistency. Recent improvement in 3D printing enables 3D printing of composites fibers in any given direction. In this study, continuous carbon fiber onyx samples were manufactured using Markforged X7 3D printers. Samples with three different fiber orientations were manufactured to determine all elastic properties. The results show that while the properties are lower than high strength CFRPs, there is high potential for the use of 3D printed composites upon improving the matrix properties as well as the bonding between fiber and matrix.


Author(s):  
Adam Brian Nulty

Introduction: The current generation of 3D printers are lighter, cheaper, and smaller, making them more accessible to the chairside digital dentist than ever before. 3D printers in general in the industrial and chairside setting can work with various types of materials including, metals, ceramics, and polymers. Evidence presented in many studies show that an ideal material used for dental restorations is characterised by several properties related to durability, cost-effectiveness, and high performance. This review is the second part in a 3D Printing series that looks at the literature on material science and applications for these materials in 3D printing as well as a discussion on the potential further development and future evolution in 3D printing materials. Conclusions: Current materials in 3D printing provide a wide range of possibilities for providing more predictable workflows as well as improving efficiency through less wasteful additive manufacturing in CAD/CAM procedures. Incorporating a 3D printer and a digital workflow into a dental practice is challenging but the wide range of manufacturing options and materials available mean that the dentist should be well prepared to treat patients with a more predictable and cost effective treatment pathway. As 3D printing continues to become a commonplace addition to chair side dental clinics, the evolution of these materials, in particular reinforced PMMA, resin incorporating zirconia and glass reinforced polymers offer increased speed and improved aesthetics that will likely replace subtractive manufacturing milling machines for most procedures.


2021 ◽  
Vol 315 ◽  
pp. 37-42
Author(s):  
Hai Long Liao ◽  
Li Hua Zhan ◽  
Yuan Gao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

2195 Al-Li alloy is famous for high strength, excellent fatigue strength and good stress corrosion resistance, which is widely used in the manufacture of high-performance aerospace components. The aim of this study is to validate how the stress relaxation aging behavior effect on the mechanical properties of 2195 Al-Li alloy. Through mechanical property test, the research was found that the performance after stress relaxation aging is higher than artificial aging (AA). In addition, the analysis of scanning electron microscopy SEM and TEM revealed that dislocations should be introduced by the stress relaxation aging process, which is more conducive to the precipitation of the T1 phase and strengthened the material with prolong ageing time. The results show that stress relaxation aging can significantly promote the precipitation of the T1. Therefore, this paper sheds new light on how SRA can improve mechanical properties and that SRA make better improve the distribution of precipitates in the grain boundary.


2011 ◽  
Vol 255-260 ◽  
pp. 1303-1306
Author(s):  
Chun Sheng Wang ◽  
Xin Xin Wang ◽  
Qian Wang

Steel-concrete composite bridge towers have the advantages of steel and concrete, they have a good prospect in bridge engineering. However, the applications and related researches of composite bridge towers in China are rare. Therefore, in this article, two types of steel-high performance concrete composite bridge tower and pier models, which had none and one row of longitudinal stud connectors, were designed. The axial compression tests were practiced on the two specimens, in order to study the influence of connectors on the mechanical properties of the composite bridge towers and piers. From the tests, the ultimate bearing capacity and failure mode were obtained, and the regularities of strains and deformations were also analyzed. The results show that setting up stud connectors on the composite towers and piers can improve the ductility and the ultimate bearing capacity obviously.


2018 ◽  
Vol 15 ◽  
pp. 104-108
Author(s):  
Luboš Řehounek ◽  
Petra Hájková ◽  
Petr Vakrčka ◽  
Aleš Jíra

Construction applications sometimes require use of a material other than construction steel or concrete – mainly in cases, where strength to weight ratio needs to be considered. A suitable solution to this problem are structures manufactured using the 3D printing process, as they have a very good strength to weight ratio (i.e.: Ti-6Al-4V – σ<sub>ult</sub> = 900 MPa and ρ = 4500 kg/m<sup>3</sup>). Trabecular structures are porous structures with local material characteristics identical to their commonly manufactured counterparts, but due to their geometry, they have different global mechanical properties and are suited for special applications. We designed and manufactured six variants of these structures and subjected them to uniaxial compression tests, nanoindentation tests and subsequently evaluated their differences and elastic moduli. The values of global moduli E are in the range of 2.55 GPa – 3.55 GPa for all specimens.


2005 ◽  
Vol 475-479 ◽  
pp. 833-836 ◽  
Author(s):  
Yoshisato Kimura ◽  
Kiichi Sakai ◽  
Shinya Teramoto ◽  
Yoshinao Mishima

Aiming for further improvement of mechanical properties of Co3AlC-based heat resistant alloys, microstructure control was conducted using optical floating zone (OFZ) melting. Unidirectional solidification was performed to align Co3AlC/a(Co) two-phase eutectic microstructure. Co3AlC single phase poly-crystal alloys were successfully fabricated for the first time by taking advantage of OFZ. Mechanical properties were evaluated for selected alloys by compression tests at ambient temperature, 1073 K and 1273 K. Excellent elevated temperature strength is achieved in Co3AlC single phase alloys and ductility is sufficiently improved in Co3AlC/a(Co) two-phase alloys.


2012 ◽  
Vol 174-177 ◽  
pp. 1406-1409 ◽  
Author(s):  
Hong Fang Li ◽  
Li Guo ◽  
Yi Xia

The mechanical properties of concretes containing super fine mineral admixtures such as limestone powder, titanium slag, lithium slag and silica ash have been investigated by compression tests. It was found that 10% limestone powder used in cocncrete is beneficial to compressive strength, it reaches 111Mpa after 28 days curing. The optimum mixing amounts of titanium slag, lithium slag and silica ash are 20%, 10% and 10%, respectively. All their 28d compressive strengths exceed 100MPa, reach super-early and super-high strength concrete level. By introducing mineral admixures into concrete, the cement consumption in concrete can be greatly reduced.


2013 ◽  
Vol 405-408 ◽  
pp. 2847-2850
Author(s):  
Wu Jian Long ◽  
Wei Lun Wang ◽  
Qi Ling Luo ◽  
Bi Qin Dong

In order to understand the influence of mixture parameters on ultra-high strength self-consolidating concrete (UHS-SCC) behaviour, an experimental design was carried out in this investigation. In total, 19 SCC mixtures were prepared to determine several key responses that affect the slump flow and compressive strength of UHS-SCC. The statistical models derived from the factorial design approach can be used to quantify the effect of mixture parameters and their coupled effects on fresh and mechanical properties of SCC.


2016 ◽  
Vol 711 ◽  
pp. 157-162 ◽  
Author(s):  
David Citek ◽  
Milan Rydval ◽  
Stanislav Rehacek ◽  
Jiří Kolísko

The Ultra High Performance Concrete (UHPC) is a very promising material suitable for application in special structures. However, the knowledge of performance of this relatively new material is rather limited. The exceptional mechanical properties of UHPC allow for a modification of the design rules, which are applicable in ordinary or high strength concrete. This paper deals in more detail with impact of thermal stress on bond properties between prestressing strands and UHPC and an influence of high temperature to final material properties of different UHPC mixtures. Specimens in the first experimental part were subjected to the cycling freeze-thaw testing. The relationship between bond behavior of both type of material (UHPC and ordinary concrete) and effect of cycling freeze-thaw tests was investigated. The second part of experimental work was focused on mechanical properties of UHPC exposure to the high temperature (Tmax = 200°C to Tmax = 1000°C). Tested mechanical properties were compressive and flexural strengths, the fracture properties will be presented in the next paper. The obtained experimental data serve as a basis for further systematic experimental verification and more accurate information about the significantly higher material properties of UHP(FR)C and its behavior in extreme conditions.


Sign in / Sign up

Export Citation Format

Share Document