scholarly journals Erosion Behavior of a Cu-Ti3AlC2 Cathode by Multi-Electric Arc

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2947 ◽  
Author(s):  
Xiaochen Huang ◽  
Yi Feng ◽  
Liang Li ◽  
Zongqun Li

A Cu-Ti3AlC2 cathode was eroded by arc discharging at 10 kV. The cross-sectional and horizontal morphologies of the eroded surface were recorded by a field emission scanning electron microscope (FE-SEM). The energy dispersive X-ray spectroscopy (EDS) and Raman spectrometry were carried out to analyze the compositions. The color-eroded surface was obtained by a three-dimensional laser scanning confocal microscope (3D LSCM). After 100 times of arc erosion, the Cu-Ti3AlC2 melted and resolidified. An eroded layer about 10 μm thick was formed, covered with pits, protrusions, and pores. The breakdown current was kept between 37 to 43 A. Under the action of a high temperature arc, Cu-Ti3AlC2 was oxidized to CuO and TiO2, accompanying the evaporation of the Al element.

Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


2015 ◽  
Vol 1107 ◽  
pp. 727-732
Author(s):  
Muhamad Izhar Sahri ◽  
Norinsan Kamil Othman ◽  
Abdul Razak Daud ◽  
Azman Jalar

The behavior of Fe-12Cr-2Mo stainless steel exposed isothermally in tube furnace at 700°C for 10 h had been studied in different environments; of mixed environment (Ar-20%O2 with coated Na2SO4-50%NaCl salts), molten salt (Na2SO4-50%NaCl) and dry oxygen (Ar-20%O2) atmospheres. The exposed samples were characterized by using optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD). The results indicated that, sample exposed in mixed environments undergoes highest corrosion rate compared with other samples. The main phase exists in all samples generally were iron-rich oxides which non-protective and thick. Conversely, EDX analysis on cross-sectional samples revealed the Cr-enrichment developed underneath the iron-rich oxide scales as the chromium concentration increases towards near the substrate. In presence of salt mixture, the oxide scales undergo spallation, however there is no crack observed. The catastrophic corrosion sample was occurred in combined environment due to the oxidation induced by the chloridation and sulfidation phenomena as well.


2018 ◽  
Vol 24 (5) ◽  
pp. 461-470 ◽  
Author(s):  
Orkun Furat ◽  
Thomas Leißner ◽  
Ralf Ditscherlein ◽  
Ondřej Šedivý ◽  
Matthias Weber ◽  
...  

AbstractIn this paper, three-dimensional (3D) image data of ore particle systems is investigated. By combining X-ray microtomography with scanning electron microscope (SEM)-based image analysis, additional information about the mineralogical composition from certain planar sections can be gained. For the analysis of tomographic images of particle systems the extraction of single particles is essential. This is performed with a marker-based watershed algorithm and a post-processing step utilizing a neural network to reduce oversegmentation. The results are validated by comparing the 3D particle-wise segmentation empirically with 2D SEM images, which have been obtained with a different imaging process and segmentation algorithm. Finally, a stereological application is shown, in which planar SEM images are embedded into the tomographic 3D image. This allows the estimation of local X-ray attenuation coefficients, which are material-specific quantities, in the entire tomographic image.


2011 ◽  
Vol 474-476 ◽  
pp. 320-324
Author(s):  
Jie Jin ◽  
Hao Li ◽  
Shen Hao Wang

Prototypes with micro-pore structure were manufactured by stereolithography technology. The prototypes were injected with mixture of wood flour as porogen and thermosetting phenolic resin as raw, then were pyrolysed after curing and prepared porous carbon templates. X-ray diffraction and scanning electron microscope were employed to analyze the phase and microstructures of the carbon templates. The pyrolysis reaction is analyzed, and the causes of the three-dimensional pore system in porous carbon template are given.


2014 ◽  
Vol 1049-1050 ◽  
pp. 89-93
Author(s):  
Shi Fang Xie ◽  
Ke Ming Liu ◽  
Pei Ling Ke ◽  
Dong Zhang ◽  
Shi Yong Wei ◽  
...  

TiN coatings were prepared by using multi-arc ion plating technique at different N2 partial pressures. The surface morphology of the coatings was characterized by using a tabletop scanning electron microscope. The cross-sectional microstructure was investigated by using a field emission scanning electron microscope. The phase composition was evaluated by using an X-Ray diffractometer. The hardness and cohesion were measured by using a nanoindentation tester and a scratch instrument, respectively. The results show that the number and size of macro-particles decrease and the compactness of TiN coating increases with the increase of the N2 partial pressure. The hardness and cohesion of the coating increase gradually with increasing N2 partial pressures and reach a peak at 0.6 Pa; then the hardness and cohesion are significantly lower at higher N2 partial pressures.


Author(s):  
Y.-X. Qiao ◽  
S.-L. Sheng ◽  
L.-M. Zhang ◽  
J. Chen ◽  
L.-L. Yang ◽  
...  

The friction and wear behaviors of a Fe-19Cr-15Mn-0.66N high nitrogen austenitic stainless steel (HNSS) were investigated. Tribological investigations were carried out under different applied loads of 5 N, 10 N, 15 N and 20 N. Scanning electron microscope (SEM) and laser scanning confocal microscope (LSCM) were used to understand the wear mechanisms under different loads and the reasons for the improved wear resistance. The lower friction coefficient and improved wear resistance were observed with the increase in applied loads. Under a higher load, the friction enhanced the work hardening ability of HNSS, which in turn improved its surface hardness and thus the increased wear resistance of HNSS.


Author(s):  
P. Dayanandan ◽  
P. B. Kaufman

A three dimensional appreciation of the guard cell morphology coupled with ultrastjuctural studies should lead to a better understanding of their still obscure dynamics of movement. We have found the SEM of great value not only in studies of the surface details of stomata but also in resolving the structures and relationships that exist between the guard and subsidiary cells. We now report the isolation and SEM studies of guard cells from nine genera of plants.Guard cells were isolated from the following plants: Psilotum nudum, four species of Equisetum, Cycas revoluta, Ceratozamia sp., Pinus sylvestris, Ephedra cochuma, Welwitschia mirabilis, Euphorbia tirucalli and Allium cepa.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Sign in / Sign up

Export Citation Format

Share Document