scholarly journals Microstructure, Mechanical, and Corrosion Properties of Ni-Free Austenitic Stainless Steel Prepared by Mechanical Alloying and HIPping

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3416
Author(s):  
Eliza Romanczuk ◽  
Krzysztof Perkowski ◽  
Zbigniew Oksiuta

An influence of the powder metallurgy route on the phase structure, mechanical properties, and corrosion resistance of Fe–18%Cr–12%Mn–N nickel-free austenitic stainless steel as a potential material for medical applications were studied. The powder was mechanically alloyed in a high purity nitrogen atmosphere for 90 h followed by Hot Isostatic Pressing at 1150 °C (1423 K) and heat treatment at 1175 °C (1423 K) for 1 h in a vacuum with furnace cooling and water quenching. More than 96% of theoretical density was obtained for the samples after Hot Isostatic Pressing that had a direct influence on the tensile strength of the tested samples (Ultimate Tensile Strength is 935 MPa) with the total elongation of 0.5%. Heat treatment did not affect the tensile strength of the tested material, however, an elongation was improved by up to 3.5%. Corrosion properties of the tested austenitic stainless steel in various stages of the manufacturing process were evaluated applying the anodic polarization measurements and compared with the austenitic 316LV stainless steel. In general, the heat treatment applied after Hot Isostatic Pressing improved the corrosion resistance. The Hot Isostatic Pressing sample shows dissolution, while heat treatment causes a passivity range, the noblest corrosion potential, and lower current density of this sample.

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 705 ◽  
Author(s):  
Tarek Allam ◽  
Xiaofei Guo ◽  
Simon Sevsek ◽  
Marta Lipińska-Chwałek ◽  
Atef Hamada ◽  
...  

A novel medium manganese (MMn) steel with additions of Cr (18%), Ni (5%), V (1%), and N (0.3%) was developed in order to provide an enhanced corrosion resistance along with a superior strength–ductility balance. The laboratory melted ingots were hot rolled, cold rolled, and finally annealed at 1000 °C for 3 min. The recrystallized single-phase austenitic microstructure consisted of ultrafine grains (~1.3 µm) with a substantial amount of Cr- and V-based precipitates in a bimodal particle size distribution (100–400 nm and <20 nm). The properties of the newly developed austenitic MMn steel X20CrNiMnVN18-5-10 were compared with the standard austenitic stainless steel X5CrNi18-8 and with the austenitic twinning-induced plasticity (TWIP) steel X60MnAl17-1. With a total elongation of 45%, the MMn steel showed an increase in yield strength by 300 MPa and in tensile strength by 150 MPa in comparison to both benchmark steels. No deformation twins were observed even after fracture for the MMn steel, which emphasizes the role of the grain size and precipitation-induced change in the austenite stability in controlling the deformation mechanism. The potentio-dynamic polarization measurements in 5% NaCl revealed a very low current density value of 7.2 × 10−4 mA/cm2 compared to that of TWIP steel X60MnAl17-1 of 8.2 × 10−3 mA/cm2, but it was relatively higher than that of stainless steel X5CrNi18-8 of 2.0 × 10−4 mA/cm2. This work demonstrates that the enhanced mechanical properties of the developed MMn steel are tailored by maintaining an ultrafine grain microstructure with a significant amount of nanoprecipitates, while the high corrosion resistance in 5% NaCl solution is attributed to the high Cr and N contents as well as to the ultrafine grain size.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 753 ◽  
Author(s):  
Kanwal Chadha ◽  
Yuan Tian ◽  
John Spray ◽  
Clodualdo Aranas

In this work, the microstructural features and mechanical properties of an additively manufactured 316L stainless steel have been determined. Three types of samples were characterized: (i) as printed (AP), (ii) annealing heat treated (AHT), and (iii) hot isostatic pressed and annealing heat treated (HIP + AHT). Microstructural analysis reveals that the AP sample formed melt pool boundaries with nano-scale cellular structures. These structures disappeared after annealing heat treatment and hot isostatic pressing. The AP and AHT samples have similar grain morphologies; however, the latter has a lower dislocation density and contains precipitates. Conversely, the HIP + AHT sample displays polygon-shaped grains with twin structures; a completely different morphology compared to the first two samples. Optical micrography reveals that the application of hot isostatic pressing reduces the porosity generated after laser processing. The tensile strengths of all the samples are comparable (about 600 MPa); however, the elongation of the HIP + AHT sample (48%) was superior to that of other two samples. The enhanced ductility of the HIP + AHT sample, however, resulted in lower yield strength. Based on these findings, annealing heat treatment after hot isostatic pressing was found to improve the ductility of as-printed 316L stainless steel by as much as 130%, without sacrificing tensile strength, but the sample may have a reduced (40%) yield strength. The tensile strength determined here has been shown to be higher than that of the hot isostatic pressed, additively manufactured 316L stainless steel available from the literature.


Alloy Digest ◽  
1999 ◽  
Vol 48 (7) ◽  

Abstract URANUS B6N is a multipurpose austenitic stainless steel with excellent corrosion properties. This alloy, developed more than 40 years ago, has been improved by the higher addition of nitrogen to approx. 0.13% to increase its structure stability and corrosion resistance. See also URANUS B66, Alloy Digest SS-602, July 1995. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as machining and joining. Filing Code: SS-747. Producer or source: Creusot-Marrel. Originally published June 1999, corrected July 1999.


2021 ◽  
Author(s):  
Jin Shi ◽  
Wen Liu ◽  
Xin Cheng

Abstract Currently, austenitic stainless steel has been widely used for the pressure boundary, including reactors, separators and storage tanks serviced in energy, petrochemical, chemical and food industries in view of its inherent corrosion resistance. However, the corrosion resistance may deteriorate under some circumstances such as field welding and inappropriate post-weld heat treatment. A steam-water separator serviced in a power plant was found cracking and a large amount of steam leaked outside. The cracking was located in the heat-affected zone (HAZ) of the joint on the head side of the pressure vessel. The material of the head was SUS 304 austenite stainless steel. Failure analysis was conducted to investigate the cause of cracking. The testing and measurement included chemical composition analysis, metallographic examination, fracture surface observation and deposit elements analysis. Results showed that the cracking was intergranular and stress corrosion cracking (SCC) was the primary cause of failure. During the fabrication of the separator, the HAZ of the joint was overheated by the thermal input of welding. Brittle carbides such as M23C6 precipitating at the grain boundary, resulted in a narrow belt lack of chromium nearby known as sensitization. The corrosion resistance of the austenite stainless-steel decreased obviously there, and cracking failure occurred rapidly under tensile stress. The influencing factors discussed in this paper mainly focused on material performance, post-weld heat treatment, and corrosivity of medium. Austenitic stainless steel containing stabilizing elements or with low C content was recommended for the new vessel design in order to avoid similar cracking failure.


2009 ◽  
Vol 151 ◽  
pp. 213-216 ◽  
Author(s):  
Maciej Tulinski ◽  
Mieczyslaw Jurczyk

In the present work, a nanocrystalline nickel-free stainless steels as well as nickel-free stainless steel/hydroxyapatite nanocomposites have been synthesized by the combination of mechanical alloying (MA), heat treatment and nitriding. The microhardness of the final bulk material was studied using Vickers method. Corrosion potentiodynamic tests were performed in Ringer’s solution. The results show that nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants.


2006 ◽  
Vol 321-323 ◽  
pp. 607-610
Author(s):  
Dong Ho Bae ◽  
Byung Bok Choi ◽  
Gyu Young Lee

Austenitic stainless steel has a large problem to decrease its corrosion resistance and mechanical properties by sensitization in the welding process. Thus, in this paper, corrosion fatigue characteristics of artificially sensitized STS304 were investigated. According as heat treatment period for sensitization increases, the Cr-carbide deposition in the grain boundary and degree of sensitization (Ia/Ir) increased. From the results, corrosion fatigue strength of sensitized STS304 was remarkably reduced compare to non-sensitized ones.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012025
Author(s):  
Pengcheng Che ◽  
Fengjun Wang ◽  
Min Xie ◽  
Qi Li ◽  
Yikun Zhang ◽  
...  

Abstract In order to identify the corrosion properties of three kinds of austenitic stainless steel used in solar power plant, experiments were conducted to test the weight loss after dynamic immersing in molten salt, the corrosion thickness rates per year was obtained, and the surface morphology by SEM and component of corrosive product by EDS were analyzed. The test result showed that the corrosion resistance of 316L and 347H are outstanding, much better than 304. The corrosion resistance order of the three material is 304 <316L< 347H. 304 and 316L can be considered as the candidate materials of low-temperature molten salt storage tank, and 347H can be used as the materials of high-temperature molten salt storage tank and molten salt heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document