Transformation Induced Plasticity Behaviors of TRIP Steels with Different Heat Treatment Processes

2010 ◽  
Vol 150-151 ◽  
pp. 118-122
Author(s):  
Fu Xian Zhu ◽  
Ming Ya Zhang ◽  
Dong Sheng Zheng

Two-stage heat treatment process which has guiding significance for continuous annealing TRIP steel producing was applied in this research. Different matrixes such as polygonal ferrite matrix, bainite ferrite matrix and annealed martenite matrix were obtained through different heat treatment processes. Compared the transformation-induced plasticity (TRIP) behaviors of three different tested samples,and the corresponding process for required product properties can be chosen. It was found that the needle-like retained austenite obtained in AMT steel was isolated from other microstructures while the retained austenite in the other two samples appeared to be equiaxed or network structure. The elongation, yield ratio and stability of retained austenite in AMT steel were all higher than that in PFT or BFT steels. BFT steel possesses highest tensile strength and lowest elongation while the yield ratio, RA content and carbon concentration in RA were all lowest for PFT steel.

2005 ◽  
Vol 500-501 ◽  
pp. 461-470 ◽  
Author(s):  
Jiří Kliber ◽  
Bohuslav Mašek ◽  
Ondrej Zacek ◽  
H. Staňková

Transformation induced plasticity (TRIP) steel combines high strength and high ductility that makes it particularly suitable for forming. Martensite within a ferrite matrix is usually obtained either by continuous casting of slabs followed by hot rolling (which is the fastest method, hence the most economical one, producing, however, relatively thick products) or by the continuous casting of slabs followed by hot rolling, cold rolling and annealing (the method used for thin products). High cooling rates, low coiling temperatures and low reduction during hot deformation were generally found to suppress the formation of polygonal ferrite and promote the presence of retained austenite. This paper focuses on development and modifications of two CMnSi-based TRIP steels with 0,23 % C;1,4 % Mn; 1,9 % Si; ( 0,08 % Nb) by means of laboratory thermomechanical processing. Description of experimental devices for the analysis of transformation plasticity under tensioncompression loading is given. Experiments were carried out on the simulator for thermaldeformation cycles SMITWELD and TANDEM was used for thermomechanical processing on the laboratory rolling mill. The maximum volume fraction of retained austenite and the resulting optimum combination of tensile strength and ductility were achieved in testing heats. Special attention was paid to volume fraction changes of single phases and to changes in morphology of phases. The results suggest that rather short isothermal bainite transformation times are sufficient to obtain TRIP microstructure. The influence of parameters of thermomechanical processing such as the amount of strain, forming temperature and austenitization time and temperature on microstructures of TRIP steels were evaluated.


2011 ◽  
Vol 239-242 ◽  
pp. 1092-1095
Author(s):  
Xu Tao Gao ◽  
Ai Min Zhao ◽  
Zheng Zhi Zhao ◽  
Ming Ming Zhang ◽  
Di Tang

By means of optical microscopy(OM), scanning electron microscopy(SEM),X-ray diffraction(XRD),And tensile test, Mechanical Properties of hot rolled transformation -induced plasticity (TRIP) steels which were prepared through three different coiling temperature was investigated. Result reveals that the formability index of the experimental steel descends when the coiling temperature becomes low. Different coiling temperature has greater impact on retained austenite. Amount and carbon content of retained austenite in the experimental steel get less with lower coiling temperature.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 449 ◽  
Author(s):  
Zhiping Xiong ◽  
Andrii G. Kostryzhev ◽  
Yanjun Zhao ◽  
Elena V. Pereloma

Instead of conventional steel making and continuous casting followed by hot and cold rolling, strip casting technology modified with the addition of a continuous annealing stage (namely, modified strip casting) is a promising short-route for producing ferrite-martensite dual-phase (DP) and multi-phase transformation-induced plasticity (TRIP) steels. However, at present, the multi-phase steels are not manufactured by the modified strip casting, due to insufficient knowledge about phase transformations occurring during in-line heat treatment. This study analysed the phase transformations, particularly the formation of ferrite, bainite and martensite and the retention of austenite, in one 0.17C-1.52Si-1.61Mn-0.195Cr (wt. %) steel subjected to the modified strip casting simulated in the laboratory. Through the adjustment of temperature and holding time, the characteristic microstructures for DP and TRIP steels have been obtained. The DP steel showed comparable tensile properties with industrial DP 590 and the TRIP steel had a lower strength but a higher ductility than those industrially produced TRIP steels. The strength could be further enhanced by the application of deformation and/or the addition of alloying elements. This study indicates that the modified strip casting technology is a promising new route to produce steels with multi-phase microstructures in the future.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
Zhongping He ◽  
Huachu Liu ◽  
Zhenyu Zhu ◽  
Weisen Zheng ◽  
Yanlin He ◽  
...  

Transformation Induced Plasticity (TRIP) steels with silicon–manganese (Si–Mn) as the main element have attracted a lot of attention and great interest from steel companies due to their low price, high strength, and high plasticity. Retained austenite is of primary importance as the source of high strength and high plasticity in Si–Mn TRIP steels. In this work, the cold rolled sheets of Si–Mn low carbon steel were treated with TRIP and Dual Phase (DP) treatment respectively. Then, the microstructure and composition of the Si–Mn low carbon steel were observed and tested. The static tensile test of TRIP steel and DP steel was carried out by a CMT5305 electronic universal testing machine. The self-built true stress–strain curve model of TRIP steel was verified. The simulation results were in good agreement with the experimental results. In addition, the phase transformation energy of retained austenite and the work borne by austenite in the sample during static stretching were calculated. The work done by austenite was 14.5 J, which was negligible compared with the total work of 217.8 J. The phase transformation energy absorption of retained austenite in the sample was 9.12 J. The role of retained austenite in TRIP steel is the absorption of excess energy at the key place where the fracture will occur, thereby increasing the elongation, so that the ferrite and bainite in the TRIP steel can absorb energy for a longer time and withstand more energy.


2011 ◽  
Vol 26 (6) ◽  
pp. 1148-1151 ◽  
Author(s):  
Mingya Zhang ◽  
Fuxian Zhu ◽  
Zhengtao Duan ◽  
Shicheng Ma

2013 ◽  
Vol 334-335 ◽  
pp. 105-110 ◽  
Author(s):  
Siti Hawa Mohamed Salleh ◽  
Mohd Nazree Derman ◽  
Mohd Zaidi Omar ◽  
Junaidi Syarif ◽  
S. Abdullah

440C martensitic stainless steels are widely used because of their good mechanical properties. The mechanical properties of 440C martensitic stainless steel were evaluated after heat treatment of these materials at various types of heat treatment processes. The initial part of this investigation focused on the microstructures of these 440C steels. Microstructure evaluations from the as-received to the as-tempered condition were described. In the as-received condition, the formations of ferrite matrix and carbide particles were observed in this steel. In contrast, the precipitation of M7C3carbides and martensitic structures were present in this steel due to the rapid quenching process from the high temperature condition. After precipitation heat treatment, the Cr-rich M23C6carbides were identified within the structures. Moreover, a 30 minutes heat-treated sample shows the highest value of hardness compared to the others holding time. Finally, the tempering process had been carried out to complete the whole heat treatment process in addition to construct the secondary hardening phenomenon. It is believed that this phenomenon influenced the value of hardness of the 440C steel.


2014 ◽  
Vol 805 ◽  
pp. 236-241 ◽  
Author(s):  
Fernando Henrique da Costa ◽  
Cristina Sayuri Fukugauchi ◽  
Marcelo dos Santos Pereira

In the second half of the last century, the automobile industries were affected from the petroleum crisis caused mainly by the wars in the Middle East. These crises led the automakers reconsider their vehicles. One of the most important events after that was the adoption of new steels by the industry. One example is the TRIP steels (Transformation-induced plasticity). In this work, a specimen of TRIP steels was etched using LePera reagent. The obtained images were analyzed using digital processing. Using the ImageJ software the methods threshold and watershed were studied. The methods were compared: the morphological characteristics and volumetric fraction of the retained austenite and martensite phases were analyzed. The results showed that the threshold led to a higher number of identified grains with lower mean area and total area fraction than the watershed method.


2011 ◽  
Vol 266 ◽  
pp. 280-283 ◽  
Author(s):  
Cai Nian Jing ◽  
Xiao Hui Chen ◽  
Ming Gang Wang ◽  
Qi Zhong Tian ◽  
Zuo Cheng Wang

Transformation induced plasticity (TRIP) steels have complex multiphase microstructure composed of ferrite, bainite and retained austenite [1]. These metastable retained austenite can transforms into martensite during plastic deformation, which generates a TRIP effect resulting in excellent combination of high strength and ductility even at high strength level [2-5]. For this reason, the TRIP-aided steel sheets are suitable to fabricate automobile parts, as they can offer excellent formability without sacrifice the strength and safety requirement of the steel sheets. As a result, the development of TRIP-aided steels has been a very important issue in the automobile field.


2010 ◽  
Vol 638-642 ◽  
pp. 3579-3584
Author(s):  
Lie Zhao ◽  
Corinna Thomser ◽  
Kirsten Schneider ◽  
Wolfgang Bleck ◽  
Jilt Sietsma

Temperature development during plastic deformation affects the stability of retained austenite and thus the mechanical properties in transformation-induced plasticity (TRIP) steels. In this work, we used a thermo-camera to monitor the temperature development during a step-wise tensile test of an Al-containing multiphase TRIP steel. The tensile tests were performed by loading the specimen at six straining rates ranging from 5 to 30 s-1 to a stress of 700 MPa and then holding for 15 min, followed by further loading at 50 s-1 until fracture. It is found that temperature increases about 13 – 18 °C during the first loading process and drops back to room temperature with a time-constant of around 2 min. The increment of temperature increases with increasing straining rate. The temperature increases around 30 °C during the second loading process. The distribution of temperature over the specimen surface is found to be rather homogeneous along the longitudinal direction in most cases, except for the ending points of two loading processes. The measurement of temperature development is found to be consistent with previous numerical simulation on the temperature development under constant stress in TRIP steels.


2012 ◽  
Vol 508 ◽  
pp. 128-132 ◽  
Author(s):  
Eui Pyo Kwon ◽  
Shun Fujieda ◽  
Kozo Shinoda ◽  
Shigeru Suzuki

In this Study, Influences of P on the Microstructure, Mechanical Properties, and Retained Austenite Characteristics in Transformation Induced Plasticity (TRIP) Steels Were Investigated. Microstructure of 0.2mass%P Containing TRIP Steel Was Inhomogeneous and it Resulted in Deterioration of the Mechanical Properties. Retained Austenite Characteristics such as Volume Fraction and Carbon Concentration Were Also Affected by P. The Stability of Retained Austenite in P Containing TRIP Steel Was Different from that in P-Free TRIP Steel. Such Difference in the Stability of Retained Austenite Was Attributed to the Effect of the Carbon Concentration in Retained Austenite as Well as their Different Microstructure.


Sign in / Sign up

Export Citation Format

Share Document