scholarly journals Effect of High Temperatures on the Impact Strength of Concrete Based on Recycled Aggregate Made of Heat-Resistant Cullet

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 465 ◽  
Author(s):  
Aleksandra Powęzka ◽  
Jacek Szulej ◽  
Paweł Ogrodnik

The article presents results obtained during testing of concrete based on CEM I 42.5R Portland cement, fine and coarse aggregate, glass, volatile ash, and superplastifier. The concrete mixture was modified using filler consisting of bromosilicate heat resistant cullet. Recycled aggregate was added to the batch. Samples for the need of testing were produced as (100 × 100 × 100) mm cubes. Before commencing proper tests, samples have been heated within the temperature range of 20–800 °C. Tests carried out during the proper testing procedure included tests of compressive strength, elevated temperature, impact strength, as well as macroscopic tests of the contact area. The obtained test results have provided proof of there being a possibility of producing special concrete, modified by products obtained from heat resistant cullet. This type of is generally characterized by satisfactory performance parameters. The average compressive strength for concrete modified by a 10% of heat resistant cullet was determined as 43.6 MPa and 48.3 MPa respectively after 28 and 180 days of curing.

2018 ◽  
Vol 7 (3.12) ◽  
pp. 272
Author(s):  
Gayathri R ◽  
Murali. G ◽  
Parthiban Kathirvel ◽  
Haridharan M.K ◽  
Karthikeyan. K

Impact strength data is a noteworthy factor for designing airport pavements, civilian and military structures etc and it is ought to be modelled precisely. In order to achieve an appropriate modelling data, it is important to select a suitable estimation method. One such commonly used statistical tool is the two parameter Weibull distribution for modelling impact failure strength accurately besides the variations in test results. This study statistically commandsthe variations in the impact failure strength (number of blows to induce failure) of fibre reinforced concrete (FRC) subjected to drop hammer test. Subsequently, a four-different novel method for the computation of Weibull parameter (Shape parameter) based on the earlier researchers test results has been proposed. The accuracy of the proposed four novel method is demonstrated by comparing with power density method and verified with goodness of fit test. Finally, the impact failure strength of FRC is offered in terms of reliability. The proposed four NEPFM is very suitable and efficient to compute the shape parameter in impact failure strength applications. 


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4066
Author(s):  
Marta Czajkowska ◽  
Ewa Walejewska ◽  
Łukasz Zadrożny ◽  
Monika Wieczorek ◽  
Wojciech Święszkowski ◽  
...  

This study was conducted to test possibilities of application of 3D printed dental models (DMs) in terms of their accuracy and physical properties. In this work, stone models of mandibles were cast from alginate impressions of 10 patients and scanned in order to obtain 3D printed acrylic replicas. The diagnostic value was tested as matching of model scans on three levels: peak of cusps, occlusal surface, and all teeth surfaces. The mechanical properties of acrylic and stone samples, specifically the impact strength, shore D hardness, and flexural and compressive strength were investigated according to ISO standards. The matching of models’ surfaces was the highest on the level of peaks of cusps (average lack of deviations, 0.21 mm) and the lowest on the level of all teeth surfaces (average lack of deviations, 0.64 mm). Acrylic samples subjected to mechanical testing, as expected, showed higher mechanical properties as compared to the specimens made of dental stone. In the present study we demonstrated that 3D printed acrylic models could be ideal representatives in the case of use as a diagnostic tool and as a part of medical records. The acrylic samples exhibited not only higher mechanical properties, but also showed better accuracy comparing to dental stone.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 272
Author(s):  
Gayathri R ◽  
Murali. G ◽  
Parthiban Kathirvel ◽  
Haridharan M.K ◽  
Karthikeyan. K

Impact strength data is a noteworthy factor for designing airport pavements, civilian and military structures etc and it is ought to be modelled precisely. In order to achieve an appropriate modelling data, it is important to select a suitable estimation method. One such commonly used statistical tool is the two parameter Weibull distribution for modelling impact failure strength accurately besides the variations in test results. This study statistically commandsthe variations in the impact failure strength (number of blows to induce failure) of fibre reinforced concrete (FRC) subjected to drop hammer test. Subsequently, a four-different novel method for the computation of Weibull parameter (Shape parameter) based on the earlier researchers test results has been proposed. The accuracy of the proposed four novel method is demonstrated by comparing with power density method and verified with goodness of fit test. Finally, the impact failure strength of FRC is offered in terms of reliability. The proposed four NEPFM is very suitable and efficient to compute the shape parameter in impact failure strength applications. 


Lightweight concrete is to be treated as structural concrete (using LECA as CA), it must satisfy the density in range of 1120-1920 kg/m3 and strength not less than 20 N/mm². In order to accomplish required strength, LECA with metakaolin was used at different concentrations of (20% to 26%) by weight of cement at equal increments of 2%. Test results clearly indicates that, using LECA and metakaolin as selective substitution increases the compressive strength and durable properties. The prerequisite of using additional cementious material as metakaolin was to enhance the compressive strength, durability of LWC. Metakaolin content seems to lead high early age strength with relative increase in strength of 28 days. The effective content of metakaolin was 24% along with 60% LECA as partial substitution gave very much appreciable results. The percentage reduction in density recorded was 33%. The durable aspects such as resistance offered to acidic environment was also affirming when as compared to conventional concrete.


2021 ◽  
Vol 4 (3) ◽  
pp. 119
Author(s):  
Muhammad Aditya Ramadhan Hasran ◽  
Dian Noviyanti Agus Imam ◽  
Bambang Sunendar

Background: One of the materials for denture bases is heat-cured acrylic resin (PMMA). This material still lacks impact strength as a mechanical strength property. The addition of reinforcing material is known to increase the mechanical strength of PMMA. One of the reinforcing materials added to PMMA is nano cellulose from rice husks, one of the wastes from agricultural products. Purpose: This study aims to determine rice husk nano cellulose's addition to the PMMA denture base's impact strength. Method:  The research sample consisted of six groups, each group consisting of 8 samples selected by simple random. The PI, P2, P3, P4, P5, and K groups were PMMA with 1%, 2%, 3%, 4%, 5% nano cellulose, and without nano cellulose. Result: Mean impact strength test results were 41.50 x 10-3 ± 3.891 J / mm2 for P1, 44.13 x 10-3 ± 3,980 J / mm2 for P2, 45.63 x 10-3 ± 4,438 J / mm2 for P3, 46.87 x 10-3 ± 4,824 J / mm2 for P4, 49.12 x 10-3 ± 4.016 J / mm2 for P5 and 36.25 x 10-3 ± 1.982 J / mm2 for K. One way Anova test results with p-value of 0.000 indicates differences in the six groups (p<0.05). Conclusion: This study concludes that the impact strength value of PMMA with the addition of rice husk nano cellulose has increased compared to the control group without the addition of rice husk nano cellulose.


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Djedjen Achmad ◽  
Desi Supriyan

ABSTRACTHas been researched the impact of mud in aggregate on geopolymer concrete with studies using the cement concrete as a reference. In this study both of concrete are mixed with a variation of mud of 0%, 0.75%, 3% and 5.75% of the combined aggregate weight. Compressive strength of cement concrete is designed with a target of 300 kg / cm2 and geopolymer concrete is made with water binder ratio (w/b) 0.25, Molarity 12 M, the ratio of sodium silicate and sodium hydroxide 1.5. At the age of 3, 7, 14 and 28 day tested of compressive strength, while the spliting test, flexural tensile strength, and modulus of elasticity are tested at 28 days. From the test results, the higher mud content in aggregate , the mechanical properties of the concrete are decreased. Based on testing of compressive strength in cement concrete at 28 days, with a 3% mud content (the content of the reference mud) turns of compressive strength decreased by 77.356%. Of the percentage reduction on the compressive strength of the cement concrete, can be compared to the mud content in geopolymer concrete at 2.04%. Thus the maximum mud on geopolymer concrete aggregate is, for coarse aggregate of 0.68% and a maximum mud content for fine aggregate was 3.4%.Key words : Mud, aggregate, concrete, cement, geopolimer, strengthABSTRAKTelah diteliti dampak kadar lumpur pada agregat untuk beton geopolimer dengan penelitian menggunakan benda uji beton semen sebagai acuan dan beton geopolimer. Dalam penelitian ini ke dua beton tersebut dicampur dengan lumpur gabungan agregat kasar dan agregat halus dengan variasi 0 %, 0.75 %, 3 % dan 5,75 % dari berat agregat gabungan. Beton semen dirancang dengan target kuat tekan 300 kg/cm2 dan beton geopolimer dibuat dengan campuran water binder ratio (w/b) 0.25, Molaritas 12 M, perbandingan sodium silikat dan sodium hidroksida 1.5. Pada umur 3, 7, 14 dan 28 hari dilakukan uji kuat tekan, sedangkan uji kuat tarik belah, uji kuat tarik lentur, dan modulus elastisitas dilakukan pada umur 28 hari. Dari hasil uji terlihat bahwa semakin tinggi kadar lumpur pada agregat, karakteristik mekanis kedua beton tersebut mengalami penurunan. Berdasarkan pengujian kuat tekan pada beton semen umur 28 hari, dengan kadar lumpur 3 % (kadar lumpur referensi) ternyata beton semen mengalami penurunan kuat tekan sebesar 77.356 %. Dari persentase penurunan kuat tekan beton semen tersebut, diplot pada grafik kuat tekan beton geopolimer maka persentase kadar lumpur gabungan yang mengalami penurunan 77.356 % adalah 2.04 %. Dengan demikian kadar lumpur maksimum pada agregat beton geopolimer adalah, untuk agregat kasar sebesar 0.68 % dan kadar lumpur maksimum untuk agregat halus adalah 3.4 %.Kata kunci : Lumpur, agregat, beton, semen, geopolimer, kekuatan


2019 ◽  
Vol 3 (1) ◽  
pp. 11-23
Author(s):  
Helwiyah Zain

Aggregate is a natural mineral grains that serve as filler in concrete mix, and the greatest material contained in the concrete. These material influence on the properties of concrete, so that the diameter size selection is essential in making the concrete. This study aims to determine the effect of variations of aggregate maximum diameter to the compressive strength of concrete. In this study used 15 specimens, were divided into 3 groups witch each of 5 specimens. Each group is distinguished aggregate maximum diameter: 31.5 mm, 16 mm, and 8 mm. Specimens used in this study is the specimen cylinder with a diameter of 15 cm and 30 cm high. Speciment tested done at age of concrete 28 days. The average compressive strength of concrete for each group of test based on variations of  the aggregate maximum diameter is: for the aggregate maximum diameter of 31.5 mm = 249.67 kg / cm2; the aggregate maximum diameter 16 mm = 274.91 kg / cm2; and the aggregate maximum diameter of 8 mm = 326.74 kg / cm2. Based on these test results, show that the average compressive strength of the concrete for the aggregate maximum diameter of 16 mm is 10.11% stronger than the concrete with the aggregate maximum diameter of 31.5 mm; and the strength of concrete aggregate maximum diameter of 8 mm, 30.87% stronger than the concrete with aggregate maximum diameter of 31.5 mm.


Author(s):  
Denny Meisandy Hutauruk ◽  
Muhammad Irwansyah ◽  
Akbar Alfa

The waste problem continues to be a complex issue. On the one hand, the use of plastic still cannot be abandoned by humans, but on the other hand the waste produced is very difficult to decompose. In Indonesia, in 2015 the amount of waste reached 64 million tons / year. Palm fiber is one of the materials that can be used as composite fiber. In this study, a research will be conducted on the manufacture of paving blocks made from HDPE plastic combined with variations of 0%, 1%, 2% and 3% palm fiber. Plastic waste is melted and put into a mold and then combined with palm fiber. From the test results, the highest compressive strength (2% fiber variation) was 45.91 kg/cm2 and the average compressive strength was 45.28 kg/cm2. This compressive strength is under the minimum compressive strength standard of SNI   Permasalahan sampah masih terus menjadi isu kompleks. Di satu sisi, penggunaan plastik masih belum bisa ditinggalkan manusia, namun di sisi lain sampah yang dihasilkan sangat sulit terurai. Di indonesia, pada tahun 2015 tercatat banyaknya sampah mencapai 64 juta ton/tahun. Ijuk merupakan salah satu material yang dapat digunakan sebagai serat komposit. Pda penelitian ini akan dilakukan penelitian mengenai pembuatan paving block berbahan dasar plastik HDPE yang dikombinasikan dengan variasi serat ijuk 0%, 1%, 2 % dan 3%. Limbah plastik dilelehkan dan dimasukkan ke dalam cetakan lalu dipadukan dengan serat ijuk. Dari hasil pengujian, didapatkan kuat tekan tertinggi (variasi serat 2%) sebesar 45,91 kg/cm2 dan kuat tekan rata-ratanya sebesar 45,28 kg/cm2. Kuat tekan ini berada di bawah standar kuat tekan minimal dari SNI.


1987 ◽  
Vol 15 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Anders Foldspang

In the health and social sectors, many diagnostic and prognostic tests are carried out without a constant watch on (1) what influence the test results have on decisions, and (2) the impact of these decisions on every day clinical work. Consequently, it is not known whether the additional information gained, if any, justifies the expenditure necessary for resources involved in a testing procedure. In fact, the net impact of testing in every day clinical work may be negative. By carrying out a testing procedure, under the before mentioned conditions, resources would be wasted. Since the early 1970's a battery of standardized performance tests have been used at the Vocational Rehabilitation Clinic in Aarhus, Denmark. Originally, the aim of the tests was to identify and give an early discharge to those clients, that were, in any case, shown to be fit for a social pre-term pension. An early discharge of these clients would enable the Clinic to counsel a greater number of clients who were suited to vocational rehabilitation. The test period lasts two weeks, and the average stay in the Clinic amounts to about 3 months. During the years 1981 to 1983, a total of 607 clients were discharged from the Clinic. Out of the 607, 379 had been given the battery of tests. Those tested stayed 16 days longer at the clinic than the rest of the clients. A few clients got an early discharge. The associations between the test results and case closure status were weak. Furthermore, these weak associations occurred in 6 out of 51 tests. On the other hand, case closure status could be predicted on the basis of already available demographic, social, and health information on the individual clients. The conclusion is, that standardized performance testing seems to have raised the resource consumption of the clinic without any demonstrable benefit in terms of client selection. The need for continuous socio-medical and epidemiological evaluation of rehabilitation tests and procedures is stressed.


Sign in / Sign up

Export Citation Format

Share Document