scholarly journals Autogenous Healing of Early-Age Cracks in Cementitious Materials by Superabsorbent Polymers

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 690
Author(s):  
Geuntae Hong ◽  
Chiwon Song ◽  
Seongcheol Choi

The effect of superabsorbent polymers (SAPs) on autogenous crack healing in cementitious materials with early-age cracking was investigated. SAP-containing samples exposed to wet/dry cycles showed better autogenous healing than those only exposed to wet conditions, as determined by water flow and compressive strength recovery tests. The water flow rates through cracks (380 ± 40 µm) in cement paste and cement mortar containing 1.0% SAP decreased by around 97.1–100% and 79.7–90.7%, respectively, after 14 cycles of healing compared to 1 cycle. Although the initial compressive strength decreased with SAP addition, it recovered somewhat after a 28-d healing period. Microscopy and spectroscopy results identified CaCO3 and/or calcium silicate hydrate (CSH) as the main healing products.

2013 ◽  
Vol 871 ◽  
pp. 171-178
Author(s):  
Qing Qiu Kong ◽  
Guo Jun Ke ◽  
Dan Wang

The effect of hydrothermal activation indifferent temperature and pressure conditions on the pozzolanic activity of waste glass powder was discussed. The waste glass powder was treated at 108°C, 0.15MPa, 116°C, 0.18MPa and 121°C, 0.2MPa for 2h in an autoclave respectively after milling to 4215cm2/g. Mortar was made with untreated and hydrothermal activated waste glass power replacement of cement at 20% respectively, then tested for compressive strength at 3, 7, 14 , 28 and 90 days. Results showed that compressive strength of cement mortar had varying degrees of decline when replacing cement with untreated waste glass powder, comparing to the control one. Decline amplitude was large at early age and small at late age. Activity of waste glass powder was significantly improved after hydrothermal treatment. Compressive strength of mortar improved as temperature and pressure elevated, obtaining optimal strength at 121°C, 0.2MPa. Compressive strength of mortar with hydrothermal activated glass powder was higher than that with untreated glass powder at all age with 20% cement replacement. Compressive strength increased 5.3% ~ 13.6% at 3 d, 6.8%~9.7% at 28 d, 9.7% ~ 17.7% at 90 d. The essence of hydrothermal activation was the corrosion of water in the glass.


2012 ◽  
Vol 174-177 ◽  
pp. 802-805 ◽  
Author(s):  
Zhu Ding ◽  
Bi Qin Dong ◽  
Feng Xing

The accumulation of fly ash leads to severe problems in ecological environments. Various ways to excite the activity of fly ash in Portland cement based cementitious materials have been carried out for many years. In the present study, effect of large volume of fly ash in phosphate cement was studied. Dead burned magnesia, two phosphates (monoammonium phosphate and monosodium phosphate), and fly ash were used. The fabricated cement mortar specimens with different fly ash dosages were cured for 28 days in the lab air. Compressive strength was determined in 1d, 3d, 7d and 28d respectively. It is showed the compressive strength reduced with increase of fly ash content and increased with the curing time. After cured 28 days, the compressive strength of cement mortar developed to14MPa, when 80% fly ash was used. The reaction product, Na2HPO4•17H2O was found by X-ray diffraction analysis in sodium phosphate based cement. No ammonia gas was emitted and large volume of fly ash can be used in cement prepared from sodium phosphate. It is a new environmentally friendly cement material.


2007 ◽  
Vol 348-349 ◽  
pp. 473-476
Author(s):  
Won Jun Park ◽  
Han Seung Lee ◽  
Ki Bong Park

It is well known that PC (polycarboxylate) agent is superior to other agents for the early-strength of concrete. Thus, this study investigates the development of mortar strength using various agents. To prove this, various factors were tested. Furthermore, this study measured compressive strength at the age of 18, 24, 36, 72, and 168 hours and gave a request text TG/DTA to observe minute structures. In addition, this study took pictures of minute structures using an SEM for each agent at the same age. According to the results, mortar using an early-strength PC agents is faster than a general water reducing AE agent, high performance PC agents, and other agents in the acceleration of hydration at the same early age. A TG/DTA test shows that the early-strength PC agents create more hydration products, such as Ca(OH)2, than others at the same age. The degree of pH in each agent is unrelated to the degree of hydration in mortar. An MIP analysis confirms these results. However, other methods are required the exact analysis of micro structures.


2010 ◽  
Vol 168-170 ◽  
pp. 532-536 ◽  
Author(s):  
Guo Li ◽  
En Li Lu ◽  
Peng Wang ◽  
Ou Geng ◽  
Yong Sheng Ji

In order to study the influences of initial curing conditions on fly ash (FA) cement concrete durability, fly ash cement samples with 30% replacement ratio were fabricated and cured in water at 10°C, 20°C, 30°Cand 40°C for 3d, 7d, 14d and 28d respectively. Hydration degrees of fly ash at early age were measured using the selective dissolve method. Correspondingly the pore structure and morphology of FA-cement mortar and compared cement mortar were studied by using MIP and SEM methods. Then early age compressive strengths of FA-cement concrete and compared normal cement concrete were tested. Experimental results show that initial curing temperatures and ages are important factors to fly ash early age hydration degree, FA-cement system microstructure, morphology and early age compressive strength etc. High curing temperatures and longer curing time can lead higher fly ash hydration degree, and then higher compressive strength of FA-cement concrete, and make the micro-structures of fly ash-cement system denser.


2019 ◽  
Vol 9 (9) ◽  
pp. 1809 ◽  
Author(s):  
Chen ◽  
Li ◽  
Chaves Figueiredo ◽  
Çopuroğlu ◽  
Veer ◽  
...  

The goal of this study is to investigate the effects of different grades of calcined clay on the extrudability and early-age strength development under ambient conditions. Four mix designs were proposed. Three of them contained high, medium, and low grades of calcined clay, respectively, and one was the reference without calcined clay. In terms of extrudability, an extrusion test method based on the ram extruder was introduced to observe the quality of extruded material filaments, and to determine the extrusion pressure of tested materials at different ages. For evaluating the very early-age strength development, the penetration resistance test, the green strength test, and the ultrasonic pulse velocity test were applied. Furthermore, the mechanical properties of the developed mix designs were determined by the compressive strength test at 1, 7 and 28 days. Finally, the main finding of this study was that increasing the metakaolin content in calcined clay could significantly increase the extrusion pressures and green strength, shorten the initial setting time and enhance the compressive strength at 1, 7, and 28 days.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Keun-Hyeok Yang ◽  
Yong-Su Jeon

The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (RSCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up toRSCMof 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased atRSCMof 0.9. Hence, it is recommended thatRSCMneeds to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete.


2021 ◽  
Vol 35 ◽  
pp. 102059
Author(s):  
J. Van Der Putten ◽  
D. Snoeck ◽  
R. De Coensel ◽  
G. De Schutter ◽  
K. Van Tittelboom

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 988
Author(s):  
Muhammad Firdaus Anuar ◽  
Payam Shafigh ◽  
Azman Ma’amor ◽  
Sumra Yousuf ◽  
Farid Wajdi Akashah

Changes in cement-based materials containing waste after exposure to elevated temperatures are an important aspect that should be studied in developing sustainable construction materials. Modified cement-based materials obtained using the industrial waste present robust engineering properties can lead to sustainable development. This work evaluated the capacity of oil palm boiler clinker (OPBC) waste that had been produced during the palm oil extraction process as partial and full substitutions for natural sand to produce cement mortar. The mortar materials were cured under three different curing conditions and were then tested at a room temperature of approximately 27 °C and elevated temperatures of 200 °C to 1000 °C using an electric furnace. The specimens were maintained in the electric furnace under maximum temperatures for 2 h and were then cooled down with water or under ambient temperature. The changes in the forms of colour, weight, compressive strength, microstructure, mineralogical composition, and thermal conductivity were investigated. Test results showed that the compressive strength of OPBC mortars was generally higher than the strength of the control mortar after heat exposure. Water cooling exerted less damage to samples compared to air cooling. The results from field emission scanning electron microscopy–energy-dispersive X-ray spectroscopy demonstrated that the mineral composition varied at different temperatures. In conclusion, this work provides an extensive report and can be used as a guide in utilising OPBC as cementitious materials for future cement-based applications.


2021 ◽  
Author(s):  
Ozer Sevim ◽  
Cagrı Goktug Sengul

Abstract The silica-rich supplementary cementitious materials (SCMs) are the key components of mechanical and microstructural properties. The use of SCMs results in improving the mechanical and microstructural properties and decreasing the environmental burden caused by cement production. In this regard, this paper reports a study to compare the influence of silica-rich supplementary cementitious materials (slag, fly ash, and bottom ash) having similar Blaine fineness on cement mortar composites in terms of mechanical and microstructural properties. First, supplementary cementitious materials (slag, fly ash, and bottom ash) were ground at similar cement Blaine fineness (~ 3300 cm2/g) and then by replacing 5% and 20% with cement, the 7-, 28-, 90-day mechanical and microstructural properties of cement mortar composites incorporating SCMs were examined. As a result, it was observed that the compressive strength and microstructural properties of cement mortar composites incorporating slag gave maximum strength and microstructural properties according to samples with fly ash and bottom ash having similar fineness and this will decrease the required amount of cement for the target properties by using slag, thus the number of CO2 emitted to nature will also decrease.


Sign in / Sign up

Export Citation Format

Share Document