scholarly journals Comparison of the influence of silica-rich supplementary cementitious materials on cement mortar composites: Mechanical and microstructural assessment

Author(s):  
Ozer Sevim ◽  
Cagrı Goktug Sengul

Abstract The silica-rich supplementary cementitious materials (SCMs) are the key components of mechanical and microstructural properties. The use of SCMs results in improving the mechanical and microstructural properties and decreasing the environmental burden caused by cement production. In this regard, this paper reports a study to compare the influence of silica-rich supplementary cementitious materials (slag, fly ash, and bottom ash) having similar Blaine fineness on cement mortar composites in terms of mechanical and microstructural properties. First, supplementary cementitious materials (slag, fly ash, and bottom ash) were ground at similar cement Blaine fineness (~ 3300 cm2/g) and then by replacing 5% and 20% with cement, the 7-, 28-, 90-day mechanical and microstructural properties of cement mortar composites incorporating SCMs were examined. As a result, it was observed that the compressive strength and microstructural properties of cement mortar composites incorporating slag gave maximum strength and microstructural properties according to samples with fly ash and bottom ash having similar fineness and this will decrease the required amount of cement for the target properties by using slag, thus the number of CO2 emitted to nature will also decrease.

2012 ◽  
Vol 174-177 ◽  
pp. 802-805 ◽  
Author(s):  
Zhu Ding ◽  
Bi Qin Dong ◽  
Feng Xing

The accumulation of fly ash leads to severe problems in ecological environments. Various ways to excite the activity of fly ash in Portland cement based cementitious materials have been carried out for many years. In the present study, effect of large volume of fly ash in phosphate cement was studied. Dead burned magnesia, two phosphates (monoammonium phosphate and monosodium phosphate), and fly ash were used. The fabricated cement mortar specimens with different fly ash dosages were cured for 28 days in the lab air. Compressive strength was determined in 1d, 3d, 7d and 28d respectively. It is showed the compressive strength reduced with increase of fly ash content and increased with the curing time. After cured 28 days, the compressive strength of cement mortar developed to14MPa, when 80% fly ash was used. The reaction product, Na2HPO4•17H2O was found by X-ray diffraction analysis in sodium phosphate based cement. No ammonia gas was emitted and large volume of fly ash can be used in cement prepared from sodium phosphate. It is a new environmentally friendly cement material.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4211
Author(s):  
Kamil Tomczak ◽  
Jacek Jakubowski ◽  
Łukasz Kotwica

This paper reveals the relationships between key factors that determine the ability of cementitious composites to self-heal autogenously and specific measures for quantifying the effects of this process. The following material factors: water-to-binder ratio (w/b), uniaxial compressive strength and age of the composite at the time of defect formation were considered, as well as the method and degree of damage to the tested material. The subjects of this study were mortars and concretes in which Portland cement was partially replaced, to varying degrees, with mechanically activated fluidized bed combustion fly ash (MAFBC fly ash) and siliceous fly ash. The samples were subjected to three-point bending or cyclic compression tests after 14 or 28 days of aging, in order to induce defects and then cured in water for 122 days. Microscopic (MO) and high-resolution scanning (HRS) observations along with computer image processing techniques were used to visualize and quantify the changes occurring in the macro-crack region near the outer surface of the material during the self-sealing process. Techniques based on the measurement of the ultrasonic pulse velocity (UPV) allowed the quantification of the changes occurring inside the damaged materials. Mechanical testing of the composites allowed quantification of the effects of the activity of the binder-supplementary cementitious materials (SCMs) systems. The analysis of the results indicates a significant influence of the initial crack width on the ability to completely close the cracks; however, there are repeated deviations from this rule and local variability of the self-sealing process. It has been shown that the compressive strength of a material is an important indicator of binder activity concerning crack width reduction due to self-sealing. Regardless of the crack induction method, the internal material changes caused by self-sealing are dependent on the degree of material damage.


2018 ◽  
Vol 765 ◽  
pp. 285-289
Author(s):  
Osama Ahmed Mohamed ◽  
Waddah Al Hawat ◽  
Omar Fawwaz Najm

Supplementary cementitious materials such as fly ash, silica fume and ground granulated blast furnace slag (GGBS) have been used widely to partially replace cement in producing self-consolidating concrete (SCC). The production of cement is associated with emission of significant amounts of CO2 and increases the human footprint on the environment. Fly ash, silica fume, and GGBS are recycled industrial by-products that also impart favorable fresh and hardened properties on concrete. This study aims to assess the effect of the amounts of fly ash and silica fume on strength and chloride penetration resistance of concrete. Rapid Chloride Penetration Test (RCPT) was used to assess the ability of SCC to resist ingress of chlorides into concrete. SCC mixes with different dosages of fly ash and silica fume were developed and tested at different curing ages. Test results showed that replacing 20% of cement with fly ash produced the highest compressive strength of 67.96 MPa among all fly ash-cement binary mixes. Results also showed that replacing15% of cement with silica fume produced the highest compressive strength of 95.3 MPa among fly ash-cement binary mixes. Using fly ash and silica fume consistently increased the concrete resistance to chloride penetration at the early ages. Silica fume at all dosages results in low or very low levels of chloride penetration at all curing ages of concrete.


2018 ◽  
Vol 937 ◽  
pp. 107-113
Author(s):  
Samina Samrose ◽  
Saifa Anzum ◽  
Samira Mahmud ◽  
Tanvir Manzur

The present research studies the compressive strength of cement mortar cubes prepared from different proportions of supplementary cementitious materials (Fly Ash and Slag) in blended cement. This research aims to find the tentative optimum composition of supplementary cementitious material that shows better performance under tannery wastewater condition, such as that in effluent treatment plants. Synthetic tannery wastewater was simulated in laboratory after collecting wastewater sample from local tannery industry. Eight types of cement compositions (varying supplementary materials proportions) have been chosen. Compressive strength test has been conducted on mortar cubes over a period of three months. Test results revealed that slag addition had shown significantly stronger effects than that of fly ash addition. Also, the combined effect of fly ash and slag and their order of variation on strength were studied. The observations made from this research will be helpful for selection of blended cement proportions in future structures exposed to similar severe conditions.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 532 ◽  
Author(s):  
Jianwei Zhou ◽  
Dong Lu ◽  
Yuxuan Yang ◽  
Yue Gong ◽  
Xudong Ma ◽  
...  

This paper presents the experimental findings of a study on the influence of combining usage of supplementary cementitious materials (SCMs) on the performance of high-strength concrete (HSC) subjected to elevated temperatures. In this study, four types of HSC formulations were prepared: HSC made from cement and fly ash (FA), HSC made from cement and ultra-fine fly ash (UFFA), HSC made from cement and UFFA-metakaolin (MK), and HSC made from cement and FA-UFFA-MK. Mechanical and physical properties of HSC subjected to high temperatures (400, 600, 800, and 1000 °C) were studied. Furthermore, the relation between residual compressive strength and physical properties (loss mass, water absorption, and porosity) of HSC was developed. Results showed that the combined usage of SCMs had limited influence on the early-age strength of HSC, while the 28-d strength had been significantly affected. At 1000 °C, the residual compressive strength retained 18.7 MPa and 23.9 MPa for concretes containing 30% UFFA-5% MK and 10% FA-20% UFFA-5% MK, respectively. The specimen containing FA-UFFA-MK showed the best physical properties when the temperature raised above 600 °C. Combined usage of SCMs (10% FA-20% UFFA-5% MK) showed the lowest mass loss (9.2%), water absorption (10.9%) and porosity (28.6%) at 1000 °C. There was a strongly correlated relation between residual strength and physical properties of HSC exposed to elevated temperatures.


2020 ◽  
Vol 10 (10) ◽  
pp. 3572
Author(s):  
Jian Zheng ◽  
Guohua Liu

Concrete and cement have been widely used in past decades as a result of urbanization. More and more supplementary cementitious materials are adopted in concrete because its production complements environmental conservation. The influence of slag, fly ash, limestone, etc., on compressive strength of concrete is of interest to engineers worldwide. Many previous studies were specific to certain engineering or certain experiments that could not reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength. The research concerning the influence of two or more kinds of supplementary cementitious materials on concrete’s compressive strength is still unclear. Moreover, there is a lack of clarity on the optimum proportion of one or more certain cementitious materials in practical engineering or experiments. To overcome these problems, this study adopts the concrete compressive strength development over time (CCSDOT) model, which generates an explicit formula to conduct quantitative research based on extensive data. The CCSDOT model performs well in fitting the compressive strength development of concrete containing cement, slag, fly ash, and limestone flour. The results reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength through the parameter analysis in the model. Two application cases are analyzed concerning the selection of the three supplementary cementitious materials and design of concrete mix proportion for practical engineering. It is concluded that the CCSDOT model and the method in this study can possibly provide guidance on both the selection of supplementary cementitious materials and the design of optimal concrete mix proportion for practical engineering. Therefore, the study is highly essential and useful.


2020 ◽  
Vol 6 (7) ◽  
pp. 1400-1410
Author(s):  
Joel Sam

Decreasing our over-reliance on cement as an ingredient in the making of concrete due to its contribution to the CO2 emissions has led to numerous researches been conducted to find suitable replacement for cement in concrete mixes.  Materials like fly ash, ground granulated blast furnace slag, silica fume, rice husk ash and metakaolin among others have been identified as materials that can at the very least be used as a replacement for cement in concrete mix. These materials are referred to as supplementary cementitious materials (SCMs). This paper reviewed the work that has been done on the use of fly ash and rice husk ash as partial replacements for concrete, its chemical composition and its effect on the compressive strength of concrete. Charts, tables and figures were employed as tools to study the various chemical compounds of fly ash and rice husk ash. It was seen that depending on how the coal or rice husk was initially processed the percentage of some of the minor compounds like Sodium oxide (Na2O), Titanium oxide (TiO2) and Phosphorus pentoxide (P2O5) were sometimes very low or not recorded as part of the final product.  The data on the compressive strength of concrete after fly ash and rice husk ash had been added in percentage increments of 0%, 10%, 20%, 30%, 40%, 50% and 0%, 5%, 7.5%, 10%, 12.5%, 15% respectively analysed over a minimum period of 7 days and a maximum period of 28 days found out that the optimal percentage partial replacement of fly ash and rice husk ash for a strong compressive concrete strength is 30% of fly ash and 7.5% of rice husk ash.


2009 ◽  
Vol 620-622 ◽  
pp. 221-224
Author(s):  
Woo Teck Kwon ◽  
Byung Ik Kim ◽  
Y. Kim ◽  
Soo Ryong Kim ◽  
Sang Wook Ha

In this work, the physical & chemical properties of bottom ash generated from power plant are analyzed. Characteristic mortar property and thermal conductivity for building material were investigated with content of added bottom ash. According to the analytic result of bottom ash, chemical compositions of bottom ash is similar to those of fly ash and compressive strength after 7days related to pozzolanic activity shows 2.5N/cm2 and it is confirmed that bottom ash possess a certain amount of moisture activity. Although the fluidity of cement mortar is rapidly decreased with increasing addition of bottom ash, compressive strength for 3 and 7days is increased. The thermal conductivity is not sensitive to the addition of bottom ash.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2184 ◽  
Author(s):  
Grzegorz Ludwik Golewski

The paper presented herein investigates the effects of using supplementary cementitious materials (SCMs) in quaternary mixtures on the compressive strength and splitting tensile strength of plain concrete. In addition, environmental benefits resulting from the proposed solutions were analysed. A total of four concrete mixtures were designed, having a constant water/binder ratio of 0.4 and total binder content of 352 kg/m3. The control mixture only contained ordinary Portland cement (OPC) as binder, whereas others incorporated quaternary mixtures of: OPC, fly ash (FA), silica fume (SF), and nanosilica (nS). Based on the obtained test results, it was found that concretes made on quaternary binders containing nanoadditives have very favorable mechanical parameters. The quaternary concrete containing: 80% OPC, 5% FA, 10% SF, and 5% nS have shown the best results in terms of good compressive strength and splitting tensile strength, whereas the worst mechanical parameters were characterized by concrete with more content of FA additive in the concrete mix, i.e., 15%. Moreover, the results of compressive strength and splitting tensile strength are qualitatively convergent. Furthermore, reducing the amount of OPC in the composition of the concrete mix in quaternary concretes causes environmental benefits associated with the reduction of: raw materials that are required for burning clinker, electricity, and heat energy in the production of cement.


2017 ◽  
Vol 18 ◽  
pp. 01029
Author(s):  
Małgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of fly and bottom ash mixture form combustion od biomass (80% of tree waste and 20% of palm kernel shells) for the produce of ceramic mortars has been presented. Currently, bio- ash from fluidized bed are deposited in landfills. Use of this ash to production of cement mortar instead of sand will reduce the consumption of the mineral resources. The chemical composition of this waste materials was determined using X-ray fluorescence (spectrometer ARL Advant ‘XP). Cement mortar were made using CEM I 42.5 R. The ash were added in an amount 20% of cement weight (in different proportions of fly and bottom ash). The results showed, that the compressive strength (after 28 days) of cement mortar containing ash is higher regardless of the type of ash mixture used. The highest compressive strength (increased by 7.0% compared to the control sample) was found for cement mortars in which the ratio of fly ash to bottom ash was 10/90. This mortars also showed the highest frost resistance (after 150 cycles freezes and unfreeze). The largest decrease the compressive strength (over 18.7%) after the frost resistance test. While cement mortars in which the ratio of fly ash to bottom ash was 90/10 showed the highest frost resistance (after 150 cycles freezes and unfreeze).


Sign in / Sign up

Export Citation Format

Share Document