scholarly journals Effect of Oxide Particles on Microstructure and Mechanical Properties of the 45 Carbon Structural Steel

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1232
Author(s):  
Bin Chen ◽  
Jianhang Feng ◽  
Yongzhen Zhai ◽  
Zhonghua Sun ◽  
Hongbo Liu ◽  
...  

Striking difference in density between the oxide and the steel results in difficulty in preparing oxide dispersion strengthened steel with large size parts or materials. In this research, Al2O3 and TiO2 particles were initially milled with the 20 steel, and then the mixture was heated to a molten state to form a master alloy, which was used as a raw material for further preparation of the object steel. It was found that homogeneous distribution of the oxide particles was obtained in the mass production of the steel. Moreover, the obtained 45 carbon structural steel presents fine microstructures, together with improved mechanical properties, especially the impact ductility. This should be attributable to the transformation from the introduced micro-size oxide particles to the nano ones, which act as heterogeneous nucleants that play an important role in grain refinement and dispersion strengthening for the steel, during the remelting of the master alloy.

2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Rohit Kumar ◽  
Ramratan . ◽  
Anupam Kumar ◽  
Rajinder Singh Smagh

Elephant dung is an excellent source of cellulosic fiber that is a basic requirement for paper making. But they contributed to very small percentage production of elephant dung. So, researchers are trying to find a new area of utilization of elephant dung fiber pulp as in reinforcement’s polymer composite. In this experiment element dung fiber pulp in the natural fiber component chemically treated with alkaline and soda AQ solution in this study, it has been aimed to use elephant dung fiber pulp in composite material and to study mechanical properties of the produced material. The produced composite samples were then characterized using tensile test, Izod impact test, thickness test. The fracture surface of the polymer composite sample was also inspected with the help of SEM. The content of elephant dung fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. The entire sample has been tested in a universal testing machine as per ASTM standard for tensile strength and impact strength. It is observed that composite with 35% fiber pulp is having the highest tensile strength of 4mm 6.445 Mpa and 8mm 11.80 Mpa. The impact strength of composite with 35% fiber pulp washes highest than 45% to 55% dung fiber pulp. This produces composite sheet will be used for the surfboards, sporting goods, building panel this not only reduces the cost but also save from environmental pollution.


This study focused on the development of a polyethylene biomaterial for replacement of the joints like knee joints, etc. Through forming aluminum oxide and titanium oxide particles into ultra-high molecular polyethylene, commonly known as high modulus polyethylene, this substance has strengthened its mechanical and wear properties. The composite is made using the injection molding machine by reinforcement materials like bio-inert aluminum oxide (Al2O3 ) and titanium di oxide (TiO2 ) with UHMWPE. Mechanical properties like Tensile, Bending, impact strength and hardness and wear rate of the synthesized polymer composite is tested according to ASTM standards.C3 composite shows enhancement in mechanical and tribological properties, only decrease in the impact strength is seen comparing to other two compositions. So C3 composite can be used as implant


2013 ◽  
Vol 749 ◽  
pp. 528-534
Author(s):  
Yue Jun Sun ◽  
Si Nan Li ◽  
Hai Fang Shi ◽  
Zhi Yu Gao ◽  
Shao Bin Yang

To investigate the fatigue property of carbon structural steel in theory, the microstructure and properties of quenched martensite must be studied in detail. In this paper, the electronic structure and mechanical properties of carbon structural steel in quenched state were calculated by the empirical electron theory of solids and molecules (EET). The relationship between electronic structure parameters and mechanical properties of martensite was investigated. The mechanical properties of quenched carbon structural steel were calculated theoretically, and the result of theoretical calculation is consistent with the experiment result.


Author(s):  
Thomas Gietzelt ◽  
Mario Walter ◽  
Volker Toth ◽  
Florian Messerschmidt ◽  
Ralf Dahm

Sulphuric acid is a widely used raw material in the chemical industry. Its corrosive effect on materials varies considerably, depending on impurities, temperature and water content. Accordingly, good corrosion resistance under all conditions is very difficult to achieve. This is especially an issue for micro process apparatus with very thin walls. Furthermore, such devices are often joint by diffusion bonding what may alter materials properties due to high temperatures and long dwell times. In fact, for each new material, the diffusion bonding parameters must be optimized and the impact on mechanical as well as corrosion properties must be investigated. In this paper, two high molybdenum alloys, namely Hastelloy B3 and BC-1, were evaluated. Diffusion bonding tests were performed using ten layers of sheet material in between round stock. Corrosion tests were performed in 70 % sulphuric acid at 100°C for 1000 h. Tensile tests on both alloys were carried out for different material conditions, to determine the change in mechanical strength and elongation at fracture values. In general, independent of the condition of the materials, the fracture behavior of both alloys was found to be ductile and the specimens show the typical dimple structure, in the case of diffusion bonded samples, interrupted by weak spots or rather non-bonded areas. These areas are obviously causing the onset of material failure and thus, a degradation of mechanical properties. Tensile samples, that were aged in 70% sulphuric acid at 100°C for 1000 hours showed local corrosion attacks at the grain boundaries at the circumferential surfaces and especially at the joining planes – for Hastelloy B3 much more pronounced than for Hastelloy BC-1. Accordingly, a further decrease of both, the stress- and elongation at fracture values is observed. However, the typical material parameters like 0.2 % yield strength used for dimensioning components are found to be sufficient high, even when operating the materials under such harsh conditions. When concluding the results, at least Hastelloy BC-1 reveals both sufficient good mechanical properties and an excellent corrosion resistance, regardless of the heat treatment, and could be considered for manufacturing micro-process engineering apparatuses operated in a sulphuric acid environment. This is a significant advance compared to the results obtained within a AiF project, previously carried out on four different materials to investigate the corrosion resistance in sulphuric acid.


1990 ◽  
Vol 213 ◽  
Author(s):  
S. J. Hwang ◽  
P. Nash ◽  
M. Dollar ◽  
S. Dymek

ABSTRACTMechanical alloying (MA) has been used to produce NiAl powders from either elemental or prealloyed constituents. The powders were consolidated by hot extrusion resulting in material which was fully dense, with a grain size around 1 μm and a homogeneous distribution of oxide particles with sizes in the range 10 to 100 nm. TEM observation indicates the presence of a significant dislocation density after consolidation. Mechanical properties have been studied by compression testing from room temperature to 1300 K in air. Yield strengths ranged from 1453 MPa to 32 MPa depending on material and test temperature. Work hardening was observed at all test temperatures for both materials. Substantial ductility was observed even at room temperature where it exceeds 7.5 %. The effects of microstructure on the mechanical properties are discussed.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1773
Author(s):  
Ning Zhu ◽  
Dustin Z. Avery ◽  
Ben A. Rutherford ◽  
Brandon J. Phillips ◽  
Paul G. Allison ◽  
...  

This paper examines the impact of oxide coatings on the surfaces of feedstock material used for Additive Friction Stir-Deposition (AFS-D). The AFS-D is a solid-state additive manufacturing process that uses severe plastic deformation and frictional heating to build bulk depositions from either metallic rod or powder feedstock. Since aluminum alloys naturally form an oxide layer, it is important to determine the influence of the feedstock surface oxide layer on the resultant as-deposited microstructure and mechanical properties. In this study, three AA6061 square-rod feedstock materials were used, each with a different thickness of aluminum oxide coating: non-anodized, 10-micron thick, and 68-micron thick. Macroscale depositions were produced with these feedstock rods using the AFS-D process. Optical and electron microscopy showed that the two oxide coatings applied through anodization were efficiently dispersed during the AFS-D process, with oxide particles distributed throughout the microstructure. These oxide particles had median sizes of 1.8 and 3 μm2, respectively. The yield and tensile strengths of these materials were not measurably impacted by the thickness of the starting oxide coating. While all three feedstock material variations failed by ductile rupture, the elongation-to-failure did decrease from 68% to 55% in the longitudinal direction and from 60% to 43% in the build direction for the thickest initial oxide coating, 68 microns.


2019 ◽  
Vol 27 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Ramūnas Mieldažys ◽  
Eglė Jotautienė ◽  
Algirdas Jasinskas ◽  
Juozas Pekarskas ◽  
Raimonda Zinkevičienė

In recent years, the European countries recycle only 5−7% of bio-waste. One activity of the biological waste disposal is granulation. The production of fertilizer from animal manure with supplement represents an important area of environmentally friendly bio-fertilizer production. This paper presents an investigation of estimation manure compost physical-mechanical properties for reuse of organic waste − cattle and cow manure, sugar production waste − molasses through new technology pellets production and of granulated fertilizer impact on soil. The experimental manure samples produced by industrial methods and samples produced in the laboratory from the time period of 2014 to 2017 were investigated. The following physical – mechanical characteristics were estimated: biometric indicators (dimensions, mass), volume and density of raw material and pellets, material and pellet’s humidity and pellets strength. Experiments results have shown that the difference in limit strength between experimental and industrial organic compost pellets was about 5%. Experiments of fertilizers on the impact on soil shown that the amount of nutrients added to the soil depends on the rate of the granulated compost fertilizer. As the norm increases, organic carbon, humus, mobile phosphorus and potassium increase in soil. Increases in soil fertility, improved agrochemical properties, soil organic matter accumulation and humus increase. Granulated compost fertilizers have no effect on soil acidity. The presented results could be helpful to the development of the fertilizing process by the granulated compost fertilizer for improvement of soil quality in small farms.


Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 57
Author(s):  
Nusrat Jannat ◽  
Rafal Latif Al-Mufti ◽  
Aseel Hussien ◽  
Badr Abdullah ◽  
Alison Cotgrave

Sawdust, which is a waste/by-product of the wood/timber industry, can be utilised as a valuable raw material in building material production due to its abundance and low cost. However, the application of sawdust in the manufacture of unfired clay blocks has received little investigation. Furthermore, the impact of different sawdust particle sizes on the properties of unfired clay blocks has not been studied. Therefore, this study screened sawdust at three different particle sizes: SP-a (212 μm < x < 300 μm), SP-b (425 μm < x < 600 μm) and SP-c (1.18 mm < x < 2.00 mm), to examine their effects on the physical and mechanical properties of unfired clay blocks. The density, linear shrinkage, capillary water absorption and flexural and compressive strengths were among the tests performed. Different sawdust percentages, i.e., 2.5%, 5%, 7.5% and 10% of the total weight of the clay, were considered. The tests results show that when sawdust was added to the mixture, the density of the samples reduced for all particle sizes. However, the linear shrinkage increased in SP-a samples but decreased in the other two particle size samples as the sawdust percentage increased from 2.5% to 10%. On the other hand, the capillary water absorption coefficient increased while the strength decreased with increasing sawdust content for all three groups. The highest compressive strength (CS) and flexural strength (FS) were achieved at 2.5% of sawdust content. Furthermore, it was observed that SP-b (CS—4.74 MPa, FS—2.00 MPa) samples showed the highest strength followed by SP-a (CS—4.09 MPa, FS—1.69 MPa) and SP-c (CS—3.90 MPa, FS—1.63 MPa) samples. Consequently, good-quality unfired clay blocks can be manufactured using sawdust up to 2.5% with particle sizes ranging between 600 and 425 μm.


Sign in / Sign up

Export Citation Format

Share Document