Microstructure and Mechanical Properties of Mechanically Alloyed NiAl

1990 ◽  
Vol 213 ◽  
Author(s):  
S. J. Hwang ◽  
P. Nash ◽  
M. Dollar ◽  
S. Dymek

ABSTRACTMechanical alloying (MA) has been used to produce NiAl powders from either elemental or prealloyed constituents. The powders were consolidated by hot extrusion resulting in material which was fully dense, with a grain size around 1 μm and a homogeneous distribution of oxide particles with sizes in the range 10 to 100 nm. TEM observation indicates the presence of a significant dislocation density after consolidation. Mechanical properties have been studied by compression testing from room temperature to 1300 K in air. Yield strengths ranged from 1453 MPa to 32 MPa depending on material and test temperature. Work hardening was observed at all test temperatures for both materials. Substantial ductility was observed even at room temperature where it exceeds 7.5 %. The effects of microstructure on the mechanical properties are discussed.

1996 ◽  
Vol 460 ◽  
Author(s):  
C. T. Liu ◽  
P. J. Maziasz ◽  
J. L. Wright

ABSTRACTThe objective of this study is to identify key microstructural parameters which control the mechanical properties of two-phase γ-TiAl alloys with lamellar structures. TiAl alloys with the base composition of Ti-47Al-2Cr-2Nb (at. %) were prepared by arc melting and drop casting, followed by hot extrusion at temperatures above the oc-transus temperature, Tα. The hot extruded materials were then heat treated at various temperatures above and below Tα in order to control microstructural features in these lamellar structures. The mechanical properties of these alloys were determined by tensile testing at temperatures to 1000° C. The tensile elongation at room temperature is strongly dependent on grain size, showing an increase in ductility with decreasing grain size. The strength at room and elevated temperatures is sensitive to interlamellar spacing, showing an increase in strength with decreasing lamellar spacing. Hall-Petch relationships hold well for the yield strength at room and elevated temperatures and for the tensile elongation at room temperature. Tensile elongations of about 5% and yield strengths around 900 MPa are achieved by controlling both colony size and interlamellar spacing. The mechanical properties of the TiAl alloys with controlled lamellar structures produced directly by hot extrusion are much superior to those produced by conventional thermomechanical treatments.


2007 ◽  
Vol 23 ◽  
pp. 123-126
Author(s):  
Radu L. Orban ◽  
Mariana Lucaci

This paper investigates the effect of Fe, Cr and B additions, in small proportions, as alloying elements in Ni3Al with the purpose to reduce its intrinsic fragility and extrinsic embrittlement and to enhance, in the same time, its mechanical properties. It represents a development of some previous research works of the authors, proving that Ni3Al-Fe-Cr-B alloys obtained by reactive synthesis (SHS) starting from Mechanically Alloyed powder mixtures have superior both room temperature tensile strength and ductility, and compression ones at temperatures up to 800 °C, than pure Ni3Al. These create premises for their using as superalloys substitutes.


2014 ◽  
Vol 59 (1) ◽  
pp. 121-126
Author(s):  
M. Zygmunt-Kiper ◽  
L. Blaz ◽  
M. Sugamata

Abstract Mechanical alloying of high-purity aluminum and 10 wt.% NiO powders combined with powder vacuum compression and following hot extrusion method was used to produce an Al-NiO composite. Mechanical properties of as-extruded materials as well as the samples annealed at 823 K /6 h, were tested by compression at 293 K - 770 K. High mechanical properties of the material were attributed to the highly refined structure of the samples. It was found that the structure morphology was practically not changed during hot-compression tests. Therefore, the effect of deformation temperature on the hardness of as-deformed samples was very limited. The annealing of samples at 823 K/6 h induced a chemical reaction between NiO-particles and surrounding aluminum matrix. As a result, the development of very fine aluminum oxide and Al3Ni grains was observed.


1990 ◽  
Vol 196 ◽  
Author(s):  
R. W. Siegel

ABSTRACTThe ultrafine grain sizes and high diffusivities in nanophase materials assembled from atomic clusters suggest that these materials may have a strong tendency toward superplastic mechanical behavior. Both small grain size and enhanced diffusivity can be expected to lead to increased diffusional creep rates as well as to a significantly greater propensity for grain boundary sliding. Recent mechanical properties measurements at room temperature on nanophase Cu, Pd, and TiO2, however, give no indications of superplasticity. Nonetheless, significant ductility has been clearly demonstrated in these studies of both nanophase ceramics and metals. The synthesis of cluster-assembled nanophase materials is described and the salient features of what is known of their structure and mechanical properties is reviewed. Finally, the answer to the question posed in the title is addressed.


2014 ◽  
Vol 875-877 ◽  
pp. 63-67 ◽  
Author(s):  
Dinh van Hai ◽  
Nguyen Trong Giang

In this work, ECAP technique was combined with cold rolling process in order to enhance mechanical properties and microstructure of pure Titanium. Coarse grain (CG) Titanium with original grain size of 150 μm had been pressed by ECAP at 425oC by 4, 8 and 12 passes, respectively. This process then was followed by rolling at room temperature with 35%, 55%, and 75% rolling strains. After two steps, mechanical properties such as strength, hardness and microstructure of processed Titanium have been measured. The result indicated significant effect of cold rolling on tensile strength, hardness and microstructure of ECAP-Titanium.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


2017 ◽  
Vol 898 ◽  
pp. 476-479
Author(s):  
Jin Xia Yang ◽  
Yuan Sun ◽  
Dong Ling Zhou

The effects of HIP process on microstructure and mechanical properties of IN792 cast superalloy were studied. The results showed that HIP process produced more uniform and finer cubic γ′ than standard heat treatment. The difference of the mechanical properties should be caused by the microstructure changes. HIP process leads the homogeneous distribution of γ′ at dendritic arm and interdendritic area, and improved UTS and YS of tested alloy at 550°C. However, it played no role in increasing UTS and YS at room temperature and stress-rupture lives of 760°C/662MPa and decreased stress-rupture lives of 982°C/186MPa.


2014 ◽  
Vol 881-883 ◽  
pp. 1396-1399
Author(s):  
Chen Jun ◽  
Quan An Li

The microstructure and mechanical properties of magnesium alloy AZ61wtih1% Sn addition has been studied in this paper. The results show that the addition of 1% Sn can refine the grain size and improve the microstructure morphology of β-Mg17Al12 phase. The addition of Sn can cause the formation of Mg2Sn phase in AZ61 alloy, which can effectively enhance the mechanical properties of magnesium alloy AZ61 at room temperature and 150°C.


2015 ◽  
Vol 736 ◽  
pp. 19-23
Author(s):  
Taek Kyun Jung ◽  
Hyo Soo Lee ◽  
Hyouk Chon Kwon

This study was carried out to investigate the effects of grain size on mechanical properties in Cu-Sn foil with a thickness of 30 um. The grain size was varied from approximately 7 um to 50 um using heat treatment at 773 K for 2 h to 24 h in a vacuum atmosphere. Tensile test was carried out at room temperature with strain rate of 1mm/min. Typical yield drop phenomenon was observed. Mechanical properties were found to be strongly affected by microstructural features including grain size. The yield strength and tensile strength gradually decreased with increasing the grain size. The strain to fracture also decreased by grain growth. These results could be explained by not only the grain size dependence of yield strength but also the ratio of thickness to grain size dependence of yield strength.


Sign in / Sign up

Export Citation Format

Share Document