scholarly journals Production of Gamma Alumina Using Plasma-Treated Aluminum and Water Reaction Byproducts

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1300 ◽  
Author(s):  
Marius Urbonavicius ◽  
Sarunas Varnagiris ◽  
Liudas Pranevicius ◽  
Darius Milcius

High purity hydrogen and solid-state byproducts are produced using a proposed plasma-activated aluminum and water reactions approach. These byproducts could be transformed into pure gamma Al2O3 powder material, while hydrogen can be used for electricity generation. Various chemical methods can be used for the synthesis of gamma alumina, but most could result in high levels of remaining impurities. Boehmite is a cost-effective starting material for the production of high-purity Al2O3. Herein, we present a novel method for the synthesis of boehmite and its transformation into high-specific-surface-area γ-alumina. Specifically, this method implicates the direct reaction between distilled water and plasma-treated aluminum powder. The results show the structural and morphological changes of the byproduct of the aluminum/water reaction to boehmite and γ-Al2O3 after a simple heating procedure (at 280 and 500 °C respectively). The high-purity hydrogen produced during the aluminum/water reaction can be used for the high-efficiency and environmentally friendly production of electrical energy.

Nanoscale ◽  
2021 ◽  
Author(s):  
Dongxue Yao ◽  
Lingling Gu ◽  
Bin Zuo ◽  
Shuo Weng ◽  
Shengwei Deng ◽  
...  

The technology of electrolyzing water to prepare high-purity hydrogen is an important field in today's energy development. However, how to prepare efficient, stable, and inexpensive hydrogen production technology from electrolyzed...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Yan Sang ◽  
Xi Cao ◽  
Gaofei Ding ◽  
Zixuan Guo ◽  
Yingying Xue ◽  
...  

Electrolysis of water to produce high-purity hydrogen is a very promising method. The development of green, high-efficiency, long-lasting and low-cost dual function electrocatalysts for oxygen evolution reaction (OER) and hydrogen...


2019 ◽  
Vol 958 ◽  
pp. 5-10
Author(s):  
Antonio Hortencio Munhoz Jr. ◽  
Renato Meneghetti Peres ◽  
Leila Figueiredo Miranda ◽  
Raphael Cons Andrades ◽  
Matheus Francelino Bezerra da Silva ◽  
...  

The Pseudoboehmite is an aluminum compound used as an alumina precursor and it is produced by sol-gel process. The sol-gel process is a methodology to produce porous, vitreous or crystalline ceramics started by molecular precursors. Pseudoboehmite with high purity, high specific surface area and porous homogeneity was obtained by sol-gel process. The material was used to produce gamma-alumina with surface area ranging from 211.2-288.1m2/g. It was studied the effect of aging time, temperature of aging and poly (vinyl alcohol) addition in the synthesis.


2011 ◽  
Vol 131 (12) ◽  
pp. 927-935
Author(s):  
Yusuke Doi ◽  
Deaheum Park ◽  
Masayoshi Ishida ◽  
Akitoshi Fujisawa ◽  
Shinichi Miura

Author(s):  
Nikolay S. Shulaev ◽  
◽  
Valeriya V. Pryanichnikova ◽  
Ramil R. Kadyrov ◽  
Inna V. Ovsyannikova ◽  
...  

The most essential scientifific and practical task in the area of ecological safety of pipelines operation is the development and improvement of methods of purifification and restoration of oil-contaminated soils. One of the most effificient and cost effective methods is electrochemical purifification, that does not require the use of expensive chemical reagents and soil excavation. However, the consideration of non-uniform contamination of various soil sections is required. The article examines the features of the organization and technological infrastructure for electrochemical purifification of non-uniformly contaminated soils when using a single electrical energy source, a method for calculating the design parameters of the corresponding installation is proposed. Effificient purifification of non-uniformly contaminated soil when using a specifified voltage is possible through the use of different-sized electrodes. For each soil type, the amount of transmitted electric charge required for soil purifification is determined by the concentration of the contaminant. Allocation of cathodes and anodes as parallel batteries and their connection using individual buses is an effective and energy-effificient solution, since an almost-uniform electric fifield is created in an inter-electrode space, thus allowing the reduction of the interelectrode resistance of the medium.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Muhammad Ashar Naveed ◽  
Muhammad Afnan Ansari ◽  
Inki Kim ◽  
Trevon Badloe ◽  
Joohoon Kim ◽  
...  

AbstractHelicity-multiplexed metasurfaces based on symmetric spin–orbit interactions (SOIs) have practical limits because they cannot provide central-symmetric holographic imaging. Asymmetric SOIs can effectively address such limitations, with several exciting applications in various fields ranging from asymmetric data inscription in communications to dual side displays in smart mobile devices. Low-loss dielectric materials provide an excellent platform for realizing such exotic phenomena efficiently. In this paper, we demonstrate an asymmetric SOI-dependent transmission-type metasurface in the visible domain using hydrogenated amorphous silicon (a-Si:H) nanoresonators. The proposed design approach is equipped with an additional degree of freedom in designing bi-directional helicity-multiplexed metasurfaces by breaking the conventional limit imposed by the symmetric SOI in half employment of metasurfaces for one circular handedness. Two on-axis, distinct wavefronts are produced with high transmission efficiencies, demonstrating the concept of asymmetric wavefront generation in two antiparallel directions. Additionally, the CMOS compatibility of a-Si:H makes it a cost-effective alternative to gallium nitride (GaN) and titanium dioxide (TiO2) for visible light. The cost-effective fabrication and simplicity of the proposed design technique provide an excellent candidate for high-efficiency, multifunctional, and chip-integrated demonstration of various phenomena.


Sign in / Sign up

Export Citation Format

Share Document