scholarly journals Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1648 ◽  
Author(s):  
Karolina Dudek ◽  
Mateusz Dulski ◽  
Bożena Łosiewicz

The surface modification of NiTi shape memory alloys is a method for increasing their multi-functionalities. In our solution, hydroxyapatite powder was mixed with a chemically synthesized silicon dioxide/silver (nSiO2/Ag) nanocomposite in a different weight ratio between components (1:1, 5:1, and 10:1) and then electrophoretically deposited on the surface of the NiTi alloy, under various time and voltage conditions. Subsequently, uniform layers were subjected to heat treatment at 700 °C for 2 h in an argon atmosphere to improve the strength of their adhesion to the NiTi substrate. A change in linear dimensions of the co-deposited materials during the sintering process was also analyzed. After the heat treatment, XRD, Raman, and Scanning Electron Microscopy (SEM) + Energy Dispersive Spectrometer (EDS) studies revealed the formation of completely new composite coatings, which consisted of rutile and TiO2-SiO2 glass with silver oxide and HAp particles that were embedded into such coatings. It was found that spalling characterized the 1:1 ratio coating, while the others were crack-free, well-adhered, and capable of deformation to 3.5%. Coatings with a higher concentration of nanocomposite were rougher. Electrochemical impedance spectroscopy (EIS) tests in Ringer’s solution revealed the capacitive behavior of the material with high corrosion resistance. The kinetics and susceptibility to pitting corrosion was the highest for the NiTi electrode that was coated with a 5:1 ratio HAp/nSiO2/Ag hybrid coating.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jin Huang ◽  
Junqiang Wang ◽  
Xiangdong Su ◽  
Weichang Hao ◽  
Tianmin Wang ◽  
...  

This paper investigated the biocompatibility of nanoporous TiO2coating on NiTi shape-memory alloy (SMA) prepared via dealloying method. Our previous study shows that the dealloying treatment at low temperature leads to 130 nm Ni-free surface titania surface layer, which possesses good bioactivity because of the combination of hydroxyl (OH−) group in the process of dealloying treatment simultaneously. In this paper, the biological compatibility of NiTi alloy before and after dealloying treatment was evaluated and compared by direct contact method with dermal mesenchymal stem cells (DMSCs) by the isolated culture way. The interrelation between the biological compatibility and surface change of material after modification was systematically analyzed. As a consequence, the dealloying treatment method at low temperature could be of interest for biomedical application, as it can avoid sensitization and allergies and improve biocompatibility of NiTi shape-memory alloys. Thus it laid the foundation of the clinical trials for surface modification of NiTi memory alloy.


2007 ◽  
Vol 359-360 ◽  
pp. 143-147
Author(s):  
Yi Yi Tao ◽  
Jiu Hua Xu ◽  
Wen Feng Ding

The machining performance of porous NiTi shape memory alloys prepared using powder metallurgical production technique has been investigated experimentally in the grinding operation. Grinding force ratio, specific grinding energy, surface characteristics were detected. The result reveals that, much difference of grinding characteristics exists among three kinds of NiTi alloy because of the pore rate and the mechanical performance induced by TiH2. Under the experimental conditions, the integrated effects of predominant plastic flow and slight brittle fracture were taken for porous NiTi alloy during grinding. Additionally, the grinding parameters should be chosen carefully, otherwise the surface quality deteriorates and even the microcrack perhaps appears.


2021 ◽  
Vol 18 (1) ◽  
pp. 71
Author(s):  
Ros Atikah Abdul Kadir ◽  
Nur Atira Shariff ◽  
Muhammad Hussain Ismail

The NiTi alloy is widely known for its unique properties which are pseudoelastic and shape memory effect. These two unique properties are suitable for biomedical applications such as an implant, biomedical suture etc. Various methods are available to produce NiTI like Metal Injection Molding (MIM), Vacuum Arc Melting (VAM), additive manufacturing (AM), etc. The most common method is MIM where the specimen undergoes the process of mixing, injection moulding, debinding and sintering. Commonly after sintering process, the specimen is inhomogeneous due to the formation of secondary phases and impurity content. These impurities content can be reduced by applying heat treatment which improves the microstructure of NiTi. The objective of the study is to investigate the effect of heat treatment on the microstructure and phase transformation of NiTi. In this study, samples were fabricated with each 50.0at% and 50.8at% of NiTi composition by using MIM. An annealing heat treatment of 430˚oC was applied to the heat-treated samples for increasing the yield strength of NiTi. All heat-treated samples were subjected to Differential Scanning Calorimetry (DSC) test for analysing the phase transformation; X-Ray Diffraction (XRD) test for identifying the existence of any secondary phases; and Scanning Electron Microscopy (SEM) test for observing the change in the microstructure. The results indicated that upon heating through the annealing process, the secondary phase of martensite which is known as NiTi (B19’) diffused and formed the austenite phase of NiTi (B2). Results from the DSC and SEM analyses showed that the formation of B2 is dominant after the heat treatment process.


Author(s):  
Mandana Bornapour ◽  
Y. Motemanni ◽  
Mahmoud Nili-Ahmadabadi ◽  
S. Raygan

NiTi shape memory alloys are a group of materials which have a lot of applications especially in aerospace industries and medical equipments because of their excellent properties. Shape memory effect (SME), pseudo-elasticity (PE), high corrosion resistance and biocompatibility is special properties of these alloys which lead to their extensive applications. The superior behavior of NiTi alloy is due to thermoelastic martensitic phase transformation. In the present paper, two NiTi shape memory alloys were prepared by non-consumable vacuum arc melting technique in copper water cooled crucible. One of them had commercial elements and the other had high purity elements. Metallographic investigation, chemical analysis, XRD and DSC were carried out on two alloys. Metallographic observation and XRD shows that structure at ambient temperature consists of austenite phase besides Ti2Ni, Ni3Ti intermetallic compounds and martensite phase. Transformation investigation determines that the impurity such as iron in commercial alloy causes two stage phase transformation B2→R→B19′.


2016 ◽  
Vol 61 (2) ◽  
pp. 577-580 ◽  
Author(s):  
K. Niespodziana ◽  
K. Jurczyk ◽  
M. Jurczyk

Abstract NiTi alloy is well known for its unique properties, such as good ductility at room temperature, good corrosion resistance and also thermal shape memory effects. On the other hand hydroxyapatite has a combination of desirable properties, such as low density and excellent compatibility with the bone which used as ceramic reinforced phases can change the properties and thermal stability of the NiTi alloy. In this study, the NiTi alloy matrix shape memory composite reinforced by hydroxyapatite particles was successfully fabricated using mechanical alloying and powder metallurgical process. The structural evaluation of milled and heat treated powders was studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The differential scanning calorimetry was used to measure the phase transformation temperatures. The porosity, Vickers’ hardness and corrosion resistance of the TiNi-HA composites were investigated. The results show that the increase of the weight ratio of hydroxyapatite causes increase the porosity and decrease the corrosion resistance. The fabricated NiTi alloy matrix composite possesses lower density and higher Vickers’ hardness as the pure NiTi shape memory alloy, yet still exhibiting the shape memory effect.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2410-2416
Author(s):  
H. C. JIANG ◽  
Y. CHEN ◽  
S. W. LIU ◽  
L. J. RONG

The pore characteristics and pore size distribution of porous near-equiatomic NiTi shape memory alloy fabricated by self-propagating high-temperature synthesis (SHS) are described in detail. The effects of different heat treatments on the transformation of porous NiTi alloy were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), and scanning electron microscopy (SEM). The results indicate that heat treatment had strong influences on the transformation temperatures and latent heats of transformation. When the porous alloy was annealed at 648K and 748K for 3.6ks, two steps transformation including R transformation occurred during cooling and heating and the R transformation temperatures are lower than B 2↔ B 19' transformation temperatures. However, no transformation was detected within the experimental temperature range if the porous alloy was solution treated at 1133K for 2.4ks. This novel phenomenon was the results of extensive Ti2Ni intermetallic compound precipitation. The transformation temperatures of porous NiTi alloy after annealing at 1323K for 3.6ks were much lower than those of the untreated alloy.


2021 ◽  
Vol 11 (4) ◽  
pp. 1802
Author(s):  
Sneha Samal ◽  
Orsolya Molnárová ◽  
Filip Průša ◽  
Jaromír Kopeček ◽  
Luděk Heller ◽  
...  

An analysis of the shape memory effect of a NiTi alloy by using the spark plasma sintering approach has been carried out. Spark plasma sintering of Ti50Ni50 powder (20–63 µm) at a temperature of 900 °C produced specimens showing good shape memory effects. However, the sample showed 2.5% porosity due to a load of 48 MPa. Furthermore, an apparent shape memory effect was recorded and the specimens were characterized by uniformity in chemical composition and shape memory alloys of NiTi showed significant austenite phases with a bending strain recovery of >2.5%.


2021 ◽  
Vol 22 (2) ◽  
pp. 507
Author(s):  
Mateusz Dulski ◽  
Robert Gawecki ◽  
Sławomir Sułowicz ◽  
Michal Cichomski ◽  
Alicja Kazek-Kęsik ◽  
...  

Recent years have seen the dynamic development of methods for functionalizing the surface of implants using biomaterials that can mimic the physical and mechanical nature of native tissue, prevent the formation of bacterial biofilm, promote osteoconduction, and have the ability to sustain cell proliferation. One of the concepts for achieving this goal, which is presented in this work, is to functionalize the surface of NiTi shape memory alloy by an atypical glass-like nanocomposite that consists of SiO2-TiO2 with silver nanoparticles. However, determining the potential medical uses of bio(nano)coating prepared in this way requires an analysis of its surface roughness, tribology, or wettability, especially in the context of the commonly used reference coat-forming hydroxyapatite (HAp). According to our results, the surface roughness ranged between (112 ± 3) nm (Ag-SiO2)—(141 ± 5) nm (HAp), the water contact angle was in the range (74.8 ± 1.6)° (Ag-SiO2)—(70.6 ± 1.2)° (HAp), while the surface free energy was in the range of 45.4 mJ/m2 (Ag-SiO2)—46.8 mJ/m2 (HAp). The adhesive force and friction coefficient were determined to be 1.04 (Ag-SiO2)—1.14 (HAp) and 0.247 ± 0.012 (Ag-SiO2) and 0.397 ± 0.034 (HAp), respectively. The chemical data showed that the release of the metal, mainly Ni from the covered NiTi substrate or Ag from Ag-SiO2 coating had a negligible effect. It was revealed that the NiTi alloy that was coated with Ag-SiO2 did not favor the formation of E. coli or S. aureus biofilm compared to the HAp-coated alloy. Moreover, both approaches to surface functionalization indicated good viability of the normal human dermal fibroblast and osteoblast cells and confirmed the high osteoconductive features of the biomaterial. The similarities of both types of coat-forming materials indicate an excellent potential of the silver-silica composite as a new material for the functionalization of the surface of a biomaterial and the development of a new type of functionalized implants.


2021 ◽  
pp. 2150024
Author(s):  
C. VELMURUGAN ◽  
V. SENTHILKUMAR

The present study investigates the superelasticity properties of spark plasma sintered (SPS) nickel titanium shape memory alloy (NiTi SMA) with the influence of sintering temperature and particle size. The nanoindentation is conducted on the surface of the NiTi SMA at various loads such as 100, 300 and 500[Formula: see text]mN. The nanoindentation technique determines the quantitative results of elasto-plastic properties such as depth recovery in the form of superelasticity, stiffness, hardness and work recovery ratio from load–depth ([Formula: see text]–[Formula: see text]) data during loading and unloading of the indenter. Experimental findings show that the depth and work recovery ratio increases with the decrease of indentation load and particle size. In contrast, increasing the sintering temperature exhibited a better depth and work recovery due to the removal of pores which could enhance the reverse transformation. The contact stiffness is influenced by [Formula: see text] which leads to attain a maximum stiffness at the highest load (500[Formula: see text]mN) and particle size (45[Formula: see text][Formula: see text]m) along with the lowest sintering temperature (700∘C). NiTi alloy exhibited a maximum hardness of 9.46[Formula: see text]GPa when subjected to indent at the lowest load and particle size sintered at 800∘C. The present study reveals a better superelastic behavior in NiTi SMA by reducing the particle size and indentation load associated with the enhancement of sintering temperature.


2009 ◽  
Vol 618-619 ◽  
pp. 319-323 ◽  
Author(s):  
Parama Chakraborty Banerjee ◽  
Tao Sun ◽  
Jonathan H.W. Wong ◽  
Min Wang

To improve the biocompatibility and bioactivity of NiTi shape memory alloy (SMA), apatite/collagen composite coatings were fabricated on the surface of NiTi SMA at room temperature using the electrochemical deposition technique. Spherical apatite particles and fibrous collagen that formed the composite coating were visible under scanning electron microscope (SEM). The Ca/P ratio of the apatite component in the coating, as determined by energy dispersive X-ray spectroscopy (EDX), was about 1.38 which is slightly higher than that of octocalcium phosphate (OCP). X-ray diffraction result showed that the apatite was amorphous, which was due to the low temperature (i.e., room temperature) deposition process. The structure of the composite coatings was further characterized using Fourier transform infrared reflection spectroscopy (FTIR). It was also found that, compared to bare NiTi SMA samples, the wettability of as-deposited samples was increased because of the formation of the composite coating.


Sign in / Sign up

Export Citation Format

Share Document