scholarly journals An Experimental and Computational Study of the High-Velocity Impact of Low-Density Aluminum Foam

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1949
Author(s):  
Matej Borovinšek ◽  
Matej Vesenjak ◽  
Kazuyuki Hokamoto ◽  
Zoran Ren

The study presents the results of an experimental and computational study of the high-velocity impact of low-density aluminum foam into a rigid wall. It is shown that the aluminum foam samples deformed before hitting the rigid wall because of the high inertial forces during the acceleration. During the impact, the samples deformed only in the region contacting the rigid wall due to the high impact velocity; the inertial effects dominated the deformation process. However, the engineering stress–strain relationship retains its typical plateau shape until the densification strain. The experimental tests were successfully reproduced with parametric computer simulations using the LS-DYNA explicit finite element code. A unique computational lattice-type model was used, which can reproduce the randomness of the irregular, open-cell structure of aluminum foams. Parametric computer simulations of twenty different aluminum foam sample models with randomly generated irregular lattice structures were carried out at different acceleration levels to obtain representative statistical results. The high strain-rate sensitivity of low-density aluminum foam was also observed. A comparison of experimental and computational results during aluminum foam sample impact shows very similar deformation behavior. The computational model correctly represents the real impact conditions of low-density aluminum foam and can be recommended for use in similar high-velocity impact investigations.

Measurement ◽  
2011 ◽  
Vol 44 (10) ◽  
pp. 2185-2189 ◽  
Author(s):  
Shigeru Tanaka ◽  
Kazuyuki Hokamoto ◽  
Seiichi Irie ◽  
Toshihiko Okano ◽  
Zoran Ren ◽  
...  

2001 ◽  
Author(s):  
Wesley J. Cantwell ◽  
Graham Wade ◽  
J. Fernando Guillen ◽  
German Reyes-Villanueva ◽  
Norman Jones ◽  
...  

Abstract The impact resistance of a range of novel fiber metal laminates based on polypropylene, polyamide and polyetherimide matrices has been investigated. Initial attention focused on optimizing the interface between the composite and aluminum alloy constituents. Here, it was shown that composite-metal adhesion was excellent in all systems examined. In addition, tests at crosshead displacement rates up to 3 m/s indicated that the interfacial fracture energies remained high under dynamic loading conditions. High velocity impact tests on a series of 3/2 laminates (3 layers of aluminum/2 layers of composite) highlighted the outstanding impact resistance of a number of these systems. The glass fiber reinforced polypropylene system offered a particularly high impact resistance exhibiting a perforation energy of approximately 160 Joules. Here, failure mechanisms such as extensive plastic drawing in the aluminum layers and fiber fracture in the composite plies were found to contribute to the excellent energy-absorbing characteristics of these systems.


2020 ◽  
pp. 089270572097617
Author(s):  
B Yelamanchi ◽  
E MacDonald ◽  
NG Gonzalez-Canche ◽  
JG Carrillo ◽  
P Cortes

Fiber Metal Laminates (FML) are structures that contain a sequential arrangement of metal and composite materials, which are of great interest to the aerospace sector due to the superior mechanical performance. The traditional manufacturing process for FML involves considerable investment in manufacturing resources depending on the design complexity of the desired components. To mitigate such limitations, 3D printing enables direct digital manufacturing to create FML with customized configurations. In this work, a preliminary mechanical characterization of additively-manufacturing-enabled FML has been investigated. A series of continuous glass fiber-reinforced composites were printed with a Markforged system and placed between layers of aluminum alloy to manufacture hybrid laminate structures. The laminates were subjected to tensile, interfacial fracture toughness, and both low-velocity and high-velocity impact tests. The results showed that the FMLs appear to have a good degree of adhesion at the metal-composite interface, although a limited intralaminar performance was recorded. It was also observed that the low and high-velocity impact performance of the FMLs was improved by 9–13% relative to that of the constituent elements. The impact performance of the FML appeared to be related to the fiber fracture, out of plane perforation and interfacial delamination within the laminates. The present study can provide an initial research foundation for considering 3D printing in the production of hybrid laminates for static and dynamic applications.


2010 ◽  
Vol 39 (12) ◽  
pp. 2536-2543 ◽  
Author(s):  
Ning Zhang ◽  
Yaowu Shi ◽  
Fu Guo ◽  
Fuqian Yang

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1510-1517
Author(s):  
QINGMING ZHANG ◽  
FENGLEI HUANG ◽  
LI CHEN ◽  
LIMING HAN ◽  
JINZHU LI

In this paper, experimental investigation and theoretical analysis are carried out in an attempt to study the response of SiC ceramic matrix composite reinforced with three dimensional braided fabric(3 D C/SiC ) under high velocity impact. The results show that 3 D C/SiC composite will be turned into comminution if the pressure of the impact point resulted from the projectile impacting 3 D C/SiC composite sample is larger than 780Mpa. Based on the analysis of the mechanism of composite comminution, a theoretical model has been developed.


2016 ◽  
Vol 852 ◽  
pp. 66-71 ◽  
Author(s):  
M. Nalla Mohamed ◽  
D. Ananthapadmanaban ◽  
M. Selvaraj

Sandwich structures based on Fibre Reinforced Polymer (FRP) facesheet skins bonded with low density aluminium foam core are increasing in use in aerospace and marine industries. These structures are very sensitive to high velocity impact during the service. Therefore, it is necessary to study the energy absorption of the structures to ensure the reliability and safety in use. Experimental investigation of these transient events is expensive and time-consuming, and nowadays the use of numerical approaches is on the increase. Hence, the purpose of this paper is to develop a numerical model of sandwich panels with aluminium foam as a core and Glass, Carbon and Kevlar Fibre Reinforced polymer composite as faceplate, subjected to high velocity impact using ABAQUS/Explicit. The influence of individual elements of the sandwich panel on the energy absorption of the structures subjected to high velocity impact loading was analysed. Selection of suitable constitutive models and erosion criterion for the damage were discussed. The numerical models were validated with experimental data obtained from the scientific literature. Good agreement was obtained between the simulations and the experimental results. The contribution of the face sheet, foam core on the impact behaviour was evaluated by the analysis of the residual velocity, ballistic limit, and damaged area.


2019 ◽  
Vol 26 (5-6) ◽  
pp. 1389-1410 ◽  
Author(s):  
Jun Liu ◽  
Haibao Liu ◽  
Cihan Kaboglu ◽  
Xiangshao Kong ◽  
Yuzhe Ding ◽  
...  

Abstract The present paper investigates the impact performance of woven-fabric carbon-fibre composites based upon both thermoplastic- and thermoset-matrix polymers under high-velocity impact loading by conducting gas-gun experiments at impact velocities of up to 100 m.s−1. The carbon-fibre reinforced-polymers (CFRPs) are impacted using soft- (i.e. gelatine) and hard- (i.e. aluminium-alloy) projectiles to simulate either a soft bird-strike or a hard foreign-body impact (e.g. runway debris), respectively, on typical composites employed in civil aircraft. The out-of-plane displacements of the impacted composite specimen are obtained by means of a three-dimensional Digital Image Correlation (DIC) system for the soft-projectile impact on the composites and the extent of damage is assessed both visually and by using portable C-scan equipment. The perforation resistance and energy absorbing capability of the composites are also studied by performing high-velocity impact experiments using the hard-projectile and the resulting extent and type of damage are identified. In addition, a Finite Element (FE) model is also developed to investigate the interaction between the projectile and the composite target.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sebastian Heimbs ◽  
Tim Bergmann

An experimental and numerical analysis of the response of laminated composite plates under high-velocity impact loads of soft body gelatine projectiles (artificial birds) is presented. The plates are exposed to tensile and compressive preloads before impact in order to cover realistic loading conditions of representative aeronautic structures under foreign object impact. The modelling methodology for the composite material, delamination interfaces, impact projectile, and preload using the commercial finite element code Abaqus are presented in detail. Finally, the influence of prestress and of different delamination modelling approaches on the impact response is discussed and a comparison to experimental test data is given. Tensile and compressive preloading was found to have an influence on the damage pattern. Although this general behaviour could be predicted well by the simulations, further numerical challenges for improved bird strike simulation accuracy are highlighted.


2021 ◽  
Author(s):  
Ramin Amid

Many studies were directed toward understanding damage patterns in composite laminates and determining the damage development sequence upon high velocity impact. Damage accumulation depends on projectile velocity and on a number of other parameters, so that it is not possible to set strict limits between the different regimes. However, experiments show that, for a given set of experimental conditions where the impact speed is the only variable, there is a certain threshold velocity below which no detectable damage occurs. Above the threshold velocity, no surface damage is observed except for a small indentation at the contact point, but significant internal damage consisting of delaminating and matrix cracks is introduced. As the impact velocity increases further, surface damage due mainly to fiber breakage is introduced. For very high speeds, the target does not have time to deform, and perforation occurs, leaving a clean hole in the sample. The objective of this study is to develop a mathematical model that corresponds to the deformed geometry under high velocity impact applications for composite laminates. A total of 100 tests were conducted on composite laminates, struck by cylindrohemispherical projectiles at normal incidents with velocities up to about 100 mls. The types of materials, used this study, are AS4/3051, IM7/5250 CarbonlEpoxy and TI003 Glass/Epoxy. The strain energy was obtained by derivation of the proposed deflection function. The strain energy was plotted with respect to the deflection of the mid-plane and, then correlated through dynamic correlation factors to actual kinetic energy during the impact. The dynamic correlation factors were determined using a genetic algorithm regression analysis. Two types of materials were tested, namely plain graphite composites and hybrid composites. The growth of the delamination and also the effect of varying the stacking sequence were investigated for the different type of materials and various orientations. The mathematical model appears to provide a reasonable representation of the deformation of composite laminates during the penetration by a cylindro-hemispherical projectile. Furthermore, hybrid composites appear to provide more resistance to the impact, whereas plain composites have less resistance with respect to the higher velocities. It was concluded that, the change of the material in a hybrid composite affects the growth of the damaged area and also reduces the impact penetration resistance. Hence, IM7/E-Glass hybrid has a higher resistance to the penetration. Measurements of the energy levels of the hybrid composites indicated that they offer the highest resistance to ballistic perforation. The hybrid composites perforated at velocities between 77 mls and 83 (mls), whereas the graphite composites perforated at velocities between 48 m/s and 59 (mls). The higher perforation resistance is attributed to the reduced level of delamination generated during the impact, and also the addition of the E-Glass, which was capable of absorbing more energy during the impact. In studying the graphite composites, the best orientation in terms of the stacking sequence was found to be [(45, -45, 0, 90) 2 ] S , which indicates that this stacking sequence withstand higher velocity and hence absorbs more energy during the impact. Therefore, the quasi-isotropi corientation [(45, -45, 0, 90) 2 ] S is best for impact resistance if a laminate is not combined with E-Glass. The ballistic-limit velocity prior to perforation for the Quasi-isotropic laminate was measured as 58.9 m/s. This is a significant increase compared to the other plain graphite samples. The energy required for the complete perforation is approximately 48% higher in this stacking sequence as compared to other plain Graphite specimens. It was also found that the energy absorption capability is reduced significantly in the cross-ply laminates. The penetration resistance of the [(0,90,0,90) 2 ] S laminate and the energy required for perforation are approximately 50% less than the other plain graphite specimens.


2015 ◽  
Vol 82 (5) ◽  
Author(s):  
Jinxiu Qiao ◽  
Chang Qing Chen

Double arrowhead honeycombs (DAHs) are a type of auxetic materials, i.e., showing negative Poisson's ratio (NPR), and are promising for energy absorption applications. Their in-plane impact responses are theoretically and numerically explored. Theoretical models for the collapse stress under quasi-static, low-velocity, and high-velocity impacts are developed, based upon the corresponding microstructural deformation modes. Obtained results show that the collapse stress under quasi-static and low velocity impacts depends upon the two re-entrant angles responsible for NPR, while it is insensitive to them under high-velocity impact. The developed theoretical models are employed to analyze the energy absorption capacity of DAHs, showing the absorbed energy under high-velocity impact approximately proportional to the second power of velocity. Extension of the high-velocity impact model to functionally graded (FG) DAHs is also discussed. Good agreement between the theoretical and finite element (FE) predictions on the impact responses of DAHs is obtained.


Sign in / Sign up

Export Citation Format

Share Document