scholarly journals Characterisation of Natural Fibres for Sustainable Discontinuous Fibre Composite Materials

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2129 ◽  
Author(s):  
Ali Kandemir ◽  
Thomas R. Pozegic ◽  
Ian Hamerton ◽  
Stephen J. Eichhorn ◽  
Marco L. Longana

Growing environmental concerns and stringent waste-flow regulations make the development of sustainable composites a current industrial necessity. Natural fibre reinforcements are derived from renewable resources and are both cheap and biodegradable. When they are produced using eco-friendly, low hazard processes, then they can be considered as a sustainable source of fibrous reinforcement. Furthermore, their specific mechanical properties are comparable to commonly used, non-environmentally friendly glass-fibres. In this study, four types of abundant natural fibres (jute, kenaf, curaua, and flax) are investigated as naturally-derived constituents for high performance composites. Physical, thermal, and mechanical properties of the natural fibres are examined to evaluate their suitability as discontinuous reinforcements whilst also generating a database for material selection. Single fibre tensile and microbond tests were performed to obtain stiffness, strength, elongation, and interfacial shear strength of the fibres with an epoxy resin. Moreover, the critical fibre lengths of the natural fibres, which are important for defining the mechanical performances of discontinuous and short fibre composites, were calculated for the purpose of possible processing of highly aligned discontinuous fibres. This study is informative regarding the selection of the type and length of natural fibres for the subsequent production of discontinuous fibre composites.

2018 ◽  
Vol 38 (5) ◽  
pp. 211-248 ◽  
Author(s):  
Mun Wai Tham ◽  
MR Nurul Fazita ◽  
HPS Abdul Khalil ◽  
Nurul Zuhairah Mahmud Zuhudi ◽  
Mariatti Jaafar ◽  
...  

Rule of mixture models are usually used in the tensile properties prediction of polymer composites reinforced with synthetic fibres. They are less utilized for natural fibre/polymer composites due to natural fibres physical and mechanical properties variability which reduces rule of mixture model's prediction values accuracy compared to the experimental values. This had led to studies conducted by various researchers to improve the existing rule of mixture models to give a better reflection of the true natural fibres properties and enhance the rule of mixture models prediction accuracy. In this paper, rule of mixture model's utilization includes the existing rule of mixture models as well as proposed rule of mixture models which have one or more factors incorporated into existing rule of mixture models for natural fibre/polymer composites tensile properties prediction are reviewed.


2020 ◽  
Vol 12 (24) ◽  
pp. 10485
Author(s):  
Salmabanu Luhar ◽  
Thadshajini Suntharalingam ◽  
Satheeskumar Navaratnam ◽  
Ismail Luhar ◽  
Julian Thamboo ◽  
...  

The concept of sustainability and the utilization of renewable bio-based sources have gained prominent attention in the construction industry. Material selection in construction plays a significant role in design and manufacturing process of sustainable building construction. Several studies are being carried out worldwide to investigate the potential use of natural fibres as reinforcement in concrete with its noticeable environmental benefits and mechanical properties. 3D printed concrete (3DPC) is another emerging technology, which has been under-developed for the past decade. The integration of reinforcement is one of the major challenges in the application of this new technology in real-life scenario. Presently, artificial fibres have been used as a reinforcement material for this special printable concrete mixture. However, natural fibre composites have received significant attention by many 3DPC constructions due to their lightweight energy conservation and environmentally friendly nature. These benchmarking characteristics unlock the wider area of natural fibres into the composite sector and challenge the substitution of artificial fibres. Hence, this paper presents a comprehensive review on the current practice and advantages of natural fibres in conventional concrete construction. Subsequently, with a view to the future efficient 3DPC construction, the potentials of natural fibres such as eco-friendly, higher impact, thermal, structural, and fire performance over the artificial fibres were highlighted, and their applicability in 3DPC as composites was recommended.


2011 ◽  
Vol 410 ◽  
pp. 23-23
Author(s):  
A. Crosky ◽  
Mindy Loo ◽  
Mohd Zakaria ◽  
Paresh Parmar ◽  
Andrew Beehag ◽  
...  

Natural fibres obtained from plant sources are attractive as a replacement for glass fibres in fibre reinforced plastic composites because of their environmental benefits. However, unlike synthetic fibres, natural plant fibres show considerable variability in their mechanical properties due to the effects of climate, soil quality, time of harvest, etc. Variability in properties of the fibres translates into variability in the properties of products made from natural fibre composites and this is a major obstacle to the more widespread use of these materials. One way to accommodate fibre variability would be to test the mechanical behaviour of samples from incoming batches of fibres and assign a grade to each batch, which could then be taken into account when the fibres are subsequently used to produce composite products. However, conventional methods of determining mechanical behaviour require test samples of constant cross-sectional area but, unfortunately, this is not the case for natural fibres which vary in shape, width and lumen size, from place to place along the fibre. Insight as to how to deal with such variability is provided from the textiles industry where strength is determined as a function of linear mass density rather than cross-sectional area. This paper examines the feasibility of using a similar approach for grading natural fibres for use in natural fibre composite products.


2010 ◽  
Vol 425 ◽  
pp. 167-178 ◽  
Author(s):  
Iman M. Taha ◽  
Gerhard Ziegmann

The application of natural fibres as polymer reinforcement is of extreme interest, especially in combination with biodegradable polymers. Such “green” composite represent a step forward to eco-design and environmentally friendly applications. The use of biodegradable polylactic acid (PLA) on the basis of renewable resources in addition to the biodegradable polyvinyl alcohol (PVA) on petrochemical basis is compared in this study with the application of polypropylene (PP) as a surrounding matrix for sisal fibres. According to the law of similarities, the chemically similar structure of natural fibres and PVA and PLA provides stronger fibre-matrix bonding characteristics compared to PP. This was experimentally validated applying single-fibre pull-out tests, where the effect of improved bonding is further investigated in terms of tensile and impact composite behaviour. SEM investigation was further applied to describe failure modes of natural fibre composites.


2005 ◽  
Vol 14 (1) ◽  
pp. 096369350501400 ◽  
Author(s):  
T. Yamamoto ◽  
L. Medina ◽  
R. Schledjewski

The processing and mechanical properties of natural fibre composites were investigated. Three kinds of kenafhemp-non-woven materials impregnated with an acrylic matrix were used. The natural fibre composites were press moulded and showed good mechanical properties. It was clarified on the basis of the microscopic observation of the fracture surfaces that the adhesion of natural fibres and matrix was important in order to obtain good mechanical properties.


2003 ◽  
Vol 12 (6) ◽  
pp. 096369350301200 ◽  
Author(s):  
S. Goutianos ◽  
T. Peijs

Currently most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The main problem in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they can not be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g. unidirectional composites) similar to off-axis composites. Additionally, a high level of twist decreases the permeability of the yarns. This problem is addressed in the current work using yarns based on both long and short flax fibres.


2020 ◽  
pp. 096739112097350
Author(s):  
Jeswin Arputhabalan ◽  
L Karunamoorthy ◽  
K Palanikumar

In engineering, composites have indicated a more profound influence in the recent development of materials with high strength to weight ratio. The purpose of this work is to identify the different and specific properties which a composite possesses when various reinforcement fibres are used in different epoxy matrix material. Composite materials have a major role to play with meeting that requirement. Many natural fibre composite materials possess good mechanical properties but still lack in satisfying applications requirements and alternate for which is seen as sandwich natural fibre composites. In this investigation, an effort has been made to study the mechanical properties exhibited by sandwich epoxy composite reinforced with various commonly used natural fibres, namely Aloevera, Kenaf, Sisal, Jute and Flax. The polymer resin used as matrix is also varied using Epoxy LY556 and Epoxy GY250. The originality of this work is in the use of Epoxy GY250 to fabricate sandwich composites with five commonly available natural fibres and compare its performance to the more widely used Epoxy LY556. It has been determined through various mechanical tests, which particular epoxy resin bonds better with the natural fibres namely, jute, sisal, aloe vera, kenaf and flax thereby providing better tensile, impact and flexural properties. The investigation is hoped to provide an insight into how the environmentally friendly natural fibres interact with the varying matrix resins and how this interaction affects the mechanical properties of said composites.


Fibre reinforced composites have been an essential concern in various fields, especially in the field of aerospace owing to its high strength to weight ratio, toughness, corrosion resistant and low cost. Natural fibre reinforced composites have produced better results in mechanical properties like impact, toughness and fatigue strengths when compared to synthetic fibre reinforced composites. Recently researches have been conducted on different varieties of natural fibres for use in plastics such as jute straw, wood, rice husk, wheat, barley etc. Natural fibres have also attracted the attention of researchers due to its availability, renewability, degradability and most importantly ecofriendly. In this work an attempt is made to improve the mechanical properties of the composite and also to enhance the compatibility of the fibres with the matrix. The composite is prepared by reinforcing banana fibres into unsaturated epoxy matrix using hand layup method. Mechanical properties such as tensile strength, flexural strength and hardness strengths are carried out on the specimens made by reinforcing with 5%, 10 % and 15 %concentration of banana fibre by weight. The results showed that the composite with 15% concentration of banana fibre produced higher tensile strength of 21.43 MPa, flexural strength of 0.895 kPa and Shroud hardness of 59.3.


2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


2016 ◽  
Vol 51 (6) ◽  
pp. 783-795 ◽  
Author(s):  
Júlio C Santos ◽  
Luciano MG Vieira ◽  
Túlio H Panzera ◽  
André L Christoforo ◽  
Marco A Schiavon ◽  
...  

The work describes the manufacturing and testing of novel hybrid epoxy/carbon fibre composites with silica micro and poly-diallyldimethylammonium chloride-functionalised nanoparticles. A specific chemical dispersion procedure was applied using the poly-diallyldimethylammonium chloride to avoid clustering of the silica nanoparticles. The influence of the various manufacturing parameters, particles loading, and mechanical properties of the different phases has been investigated with a rigorous Design of Experiment technique based on a full factorial design (2131). Poly-diallyldimethylammonium chloride-functionalised silica nanoparticles were able to provide a homogenous dispersion, with a decrease of the apparent density and enhancement of the mechanical properties in the hybrid carbon fibre composites. Compared to undispersed carbon fibre composite laminates, the use of 2 wt% functionalised nanoparticles permitted to increase the flexural modulus by 47% and the flexural strength by 15%. The hybrid carbon fibre composites showed also an increase of the tensile modulus (9%) and tensile strength (5.6%).


Sign in / Sign up

Export Citation Format

Share Document