scholarly journals Investigating the Thermal-Protective Performance of Fire-Retardant Fabrics Considering Garment Aperture Structures Exposed to Flames

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3579
Author(s):  
Miao Tian ◽  
Qi Wang ◽  
Yiting Xiao ◽  
Yun Su ◽  
Xianghui Zhang ◽  
...  

The application of fire-retardant fabrics is essential for providing thermal protective function of the garments. Appropriate clothing design are beneficial for preventing the wearers from skin burn injuries and heat strains simultaneously. The intention of this work was to investigate the effects of clothing ventilation designs on its thermal protective performance by bench-scale tests. Four boundary conditions were designed to simulate the garment aperture structures on fabric level. Tests of thermal shrinkage, mass loss and time-to-second-degree-burns were performed with and without air gap under three heat-flux levels for two kinds of inherently fire-retardant fabrics. The impacts of fabric type, heat-flux level, air gap and boundary condition were analyzed. The presence of a 6.4-mm air gap could improve thermal protective performance of the fabrics, however, the garment openings would decrease this positive effects. More severe thermal aging found for spaced test configuration indicated the importance of balancing the service life and thermal protective performance of the clothing. The findings of this study implied that the characteristics of fabric type, air gap, boundary condition, and their effects on fabric thermal aging should be considered during clothing ventilation designs, to balance the thermal protection and comfort of the protective gear.

2020 ◽  
Vol 20 (6) ◽  
pp. 109-114
Author(s):  
Hoseung Ro ◽  
Hyunpil Hong ◽  
Jinwon Cho ◽  
Myuongsu Park

To develop industrial and firefighter thermal protection cloth, 12 base fabrics were prepared from a combination of several types of sample, and their thermal performances were evaluated. Thermal performance comprises flame retardant capability, radiant protective performance, and thermal protective performance. Thermal protection performance has been assessed in accordance with ISO 15025, ISO 9151, ISO 6942, and ISO 17492. In this study, however, thermal protective performance was assessed only in accordance with ISO 15025. The results showed that Samples 1-6 satisfied the fire resistance criteria, whereas Samples 7-12 did not satisfy the fire resistance criteria. Additional thermal performance tests need to be conducted in follow-up studies.


2017 ◽  
Vol 21 (4) ◽  
pp. 1665-1671 ◽  
Author(s):  
Meng Chen ◽  
Fanglong Zhu ◽  
Qianqian Feng ◽  
Kejing Li ◽  
Rangtong Liu

The effects of absorbed moisture on thermal protective performance of fire-fighters? clothing materials under radiant heat flux conditions were analyzed in this paper. A thermal protective performance tester and temperature sensor were used to measure the temperature variations for the facecloth side of four kinds of commonly used flame retardant fabrics in several radiant heat exposures, which varied in moisture content. Experimental results showed that, all of the temperature profiles of these four kinds of moistened fabrics under different radiant heat flux conditions presented the same variation trend. The addition of moisture had a positive influence on the thermal protective performance during the constant temperature period when heat radiation time was more than 60 seconds. As the heat radiation time increased beyond 500 seconds, the thermal protective performance of moistened fabrics became worse than that of dried fabrics in general.


2013 ◽  
Vol 821-822 ◽  
pp. 233-236
Author(s):  
Xiao Hui Li ◽  
Min Wang ◽  
Jun Li

Objective and quantitative evaluation of garment thermal protective performance should be based on the simulation of human in actual thermal environments as realistic as possible. In this paper, by using a new type of flame manikin which can rotate and make different postures, the dynamic scene where a firefighter wearing fire protective ensembles rescue in the flash fire was simulated. The skin burn prediction result showed that the total burn percent suffered by the manikin was 7.76%, of which the 2nd degree burn and the 3rd degree burn was 5.12% and 2.64% respectively. This indicated that the firefighter ensembles exhibited relatively good thermal protective performance. It can provide enough protection for the firefighter in 8s dynamic exposure while more protection should be added to the head.


2019 ◽  
Vol 69 (06) ◽  
pp. 458-465
Author(s):  
NAEEM JAWAD ◽  
ADNAN MAZARI ◽  
AKCAGUN ENGIN ◽  
HAVELKA ANTONIN ◽  
KUS ZDENEK

This experimental work is an effort to seek the possibility of improvement in thermal protective performance of firefighter protective clothing at different levels of heat flux density. Improvement in thermal protective performance means enhancement in the time of exposure against the heat flux, which will provide extra time to firefighters to perform their duties without suffering from severe injuries. Four different multilayer combinations of firefighter protective clothing were investigated. Each combination consists of outer shell, moisture barrier and thermal liner. Aerogel sheet was also employed as a substitute to thermal barrier. Initially, properties like thermal resistance, thermal conductivity, and water vapor resistance of multilayer fabric assemblies were investigated. Later on these combinations were exposed to different levels of radiant heat flux density i.e. at 10, 20 and 30 kW/m2 as per ISO 6942 standard. It was noted that those combinations in which aerogel blanket was used as thermal barrier acquire greater thermal resistance, water vapor resistance and have less transmitted heat flux density values.


2013 ◽  
Vol 796 ◽  
pp. 607-612
Author(s):  
Fei Fei Li ◽  
Chun Qin Zheng ◽  
Guan Mei Qin ◽  
Xiao Hong Zhou

Thermal insulation and flame-retardant (TIFR) protective clothing, which has good thermal protective performance (TPP), could protect people from high-temperature or flame in casting industry, the petrochemical industry, fire industry and et al. That is, TIFR protective clothing must have certain function of slowing or restraining heat transmission, and insulating radiant heat and convection heat from high temperature heat source. The construction of TIFR protective clothing is being developed from single layer to multi-layer fabrics made by flame-retardant (FR) fibre. In this paper, based on TPP-206 tester, the TPP coefficient of single and multi-layer fabrics with flame-retardant were measured, and the TPP of TIFR protective clothing was analyzed. TPP coefficient of single fabrics included the FR viscose non-woven fabric do not meet the standard. That of all of multi-layer fabrics meet the standard requirement, and the FR viscose/wool blended fabric is not suitable for fire fighter. It is significant and the most observable effect to put the PTFE membrane between the outer layer and the insulating layer. It could improve the overall thermal protection performance.


2017 ◽  
Vol 88 (16) ◽  
pp. 1847-1861 ◽  
Author(s):  
Hui Zhang ◽  
Guowen Song ◽  
Yiming Gu ◽  
Haitao Ren ◽  
Juan Cao

Firefighters wearing protective clothing perspire profusely in the process of performing their duties, and sweat increases moisture in the inner layers of multilayer protective clothing. Also, the outer shell fabrics inevitably become wet. In this study, two kinds of outer shell fabrics (aramid IIIA fabric and aramid 1313 and flame-retardant viscose-blended fabric) and three kinds of thermal liner fabrics with different thicknesses were selected. Two wetness conditions were investigated to simulate the sweating in thermal liner fabric with or without the wet outer shell fabric. A modified thermal protective performance (TPP) tester was employed to explore the effects of moisture and its distribution on stored thermal energy developed in six fabric systems and on TPP under flash exposure. Pearson correlations were established to analyze the relationships of the fabric systems’ thickness and second-degree burn time, and of absorbed energy and second-degree burn time in different configurations. The statistical analysis from these obtained data indicated that the thickness of fabric systems had no significant correlation for second-degree burn time ( p > 0.05), but the absorbed energy exhibited a strong relation (the lowest R2 value could reach 0.8070 and p-values were all much less than 0.05). Performance results for the wet thermal liner indicated that the negative impact on thermal protection reached the greatest degree in 15% wetness, but in some extreme situations (100% wetness), the performance was improved (the maximum increase can achieve 116.2% over performance in dry condition). However, the existing moisture in the outer shell showed a positive effect. These findings will enable the engineering of textile materials that achieve high performance protection from thermal hazards and give some guidance to firefighters during operations.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1932 ◽  
Author(s):  
Jiazhen He ◽  
Yehu Lu ◽  
Lijun Wang ◽  
Nini Ma

This study explored the application of shape memory alloy (SMA) springs in a multilayer protective fabric assembly for intelligent insulation that responded to thermal environment changes. Once the SMA spring was actuated, clothing layers were separated, creating an adjustable air gap between the adjacent fabric layers. The impacts of six different SMA arrangement modes and two different spring sizes on thermal protection against either a radiant heat exposure (12 kW/m2) or a hot surface exposure (400 °C) were investigated. The findings showed that the incorporation of SMA springs into the fabric assembly improved the thermal protection, but the extent to which the springs provided thermal protection was dependent on the arrangement mode and spring size. The effectiveness of reinforcing the protective performance using SMA springs depended on the ability of clothing layers to expand an air layer. The regression models were established to quantitatively assess the relationship between the air gap formed by SMA spring and the thermal protective performance of clothing. This study demonstrated the potential of SMA spring as a suitable material for the development of intelligent garments to provide additional thermal protection and thus reduce the number of clothing layers for transitional thermal protective clothing.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1432-1436
Author(s):  
Liu Yang ◽  
Jian Zhong Yang ◽  
Long Li

This paper studies the fire taking multi-layer fabric thermal protection performance of the system, respectively from the single thermal protective performance of fabric and ten kinds of multilayer composite fabric through analyzing the thermal protective performance, The following conclusions: in terms of single flame retardant fabrics, for the same fabric fiber composition, the TPP value with the thickness of the fabric, square meter weight has significant positive correlation. Experimental results show that multi-layer combination of 8 # protective performance is best, flame retardant protective performance is the most suitable for fire-fighting suits fabrics.


Sign in / Sign up

Export Citation Format

Share Document