scholarly journals Surface, Subsurface and Tribological Properties of Ti6Al4V Alloy Shot Peened under Different Parameters

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4363
Author(s):  
Yasemin Yıldıran Avcu ◽  
Okan Yetik ◽  
Mert Guney ◽  
Eleftherios Iakovakis ◽  
Tamer Sınmazçelik ◽  
...  

Ti6Al4V alloy was shot peened by using stainless-steel shots with different sizes (0.09–0.14 mm (S10) and 0.7–1.0 mm (S60)) for two durations (5 and 15 min) using a custom-designed peening system. The shot size was the main parameter modifying the roughness (0.74 µm for S10 vs. 2.27 µm for S60), whereas a higher peening time slightly increased roughness. Hardness improved up to approximately 35% by peening with large shots, while peening time was insignificant in hardness improvement. However, longer peening duration with large shots led to an unwanted formation of micro-cracks and delamination on the peened surfaces. After dry sliding wear tests, the mass loss of peened samples (S60 for 15 min) was 25% higher than that of un-peened samples, while the coefficient of friction decreased by 12%. Plastically deformed regions and micro-scratches were observed on the worn surfaces, which corresponds to mostly adhesive and abrasive wear mechanisms. The present study sheds light on how surface, subsurface and tribological properties of Ti6Al4V vary with shot peening and peening parameters, which paves the way for the understanding of the mechanical, surface, and tribological behavior of shot peened Ti6Al4V used in both aerospace and biomedical applications.

2019 ◽  
Vol 89 (23-24) ◽  
pp. 5153-5164
Author(s):  
Meng Su ◽  
Lei Liang ◽  
Fang Ren ◽  
Weigang Yao ◽  
Mingming Yu ◽  
...  

Hybrid polyimide (PI)-polytetrafluoroethylene (PTFE)/Nomex fabric composites and Nomex-PTFE/Nomex fabric composites were prepared with benzoxazine (BOZ) as the resin binder. The tribological properties and wear mechanisms of the two composites at different temperatures were investigated using a ball-on-disk wear tester. Before sliding wear tests, a thermo-aging test, thermogravimetric analysis and dynamic mechanical analysis of PI and Nomex fibers were performed to evaluate the thermal properties of the two reinforcing fibers. After each wear test, scanning electron microscopy was employed to analyze the morphologies of the worn surfaces of the composite. The results of sliding wear tests show that the difference between the tribological properties of the two composites is small at room temperature. However, the hybrid PI-PTFE/Nomex fabric composite achieves better tribological properties at high temperatures compared with the hybrid Nomex-PTFE/Nomex fabric composite, which suffered wear failure at 240℃. It is proposed that the excellent thermal mechanical property and thermal stability of PI fibers is the main factor that endows the PI-PTFE/Nomex/BOZ composite with a more favorable tribological property at high temperatures. Moreover, the influence of the increasing temperature on the tribological properties of the two composites was also investigated.


2007 ◽  
Vol 342-343 ◽  
pp. 557-560
Author(s):  
Kwon Yong Lee ◽  
Hwan Kim ◽  
D.W. Kim ◽  
Dae Joon Kim ◽  
Myung Hyun Lee ◽  
...  

The sliding wear of four different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were characterized in a ceramicceramic point contact pair. The wear tests were performed by a pin-on-disk type wear tester in a linear reciprocal sliding motion with a point contact in both dry and bovine serum lubricated conditions at room temperature. For the dry sliding wear tests, AZ-2 (20 vol% (Y,Nb,Ce)-TZP/ 80 vol% Al2O3) showed the best wear resistance among four kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic- ceramic contact pairs of femoral head and acetabular liner in total hip replacement.


Author(s):  
T S Mahmoud

The dry sliding wear performance of hypereutectic A390 Al—Si alloy reinforced with graphite particulates (Grp) was investigated. Composites containing 4 and 8 wt% of Grp were produced by rheocasting technique followed by squeeze casting. Pins of the materials were rubbed against a 316 stainless steel disc using pin-on-ring type apparatus under various loads and speeds. It has been observed that both wear rate and the coefficient of friction of the composites decreased considerably with Grp additions. The A390/Grp composites exhibited higher wear resistance than those obtained for the monolithic A390 alloy. The formation of the hard tribo-layer on the surface of the composites assisted in increasing the wear resistance of these materials. It is believed that the reduction of the friction coefficient is attributed the presence of the graphite layers within the tribo-layer.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Vitali Podgursky ◽  
Maxim Yashin ◽  
Taivo Jõgiaas ◽  
Mart Viljus ◽  
Asad Alamgir ◽  
...  

Comparative analysis of dry sliding wear behavior of nanocrystalline diamond (NCD) films and NCD films coated with a thin Al2O3 layer (Al2O3/NCD) is the main goal of the present study. Plasma-enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD) methods were used to prepare the NCD and alumina films, respectively. Sliding wear tests were conducted at room temperature (RT), 300 and 450 °C in air. Independent of type of specimen, superlubricating behavior with the coefficient of friction (COF) in the range of 0.004‒0.04 was found for the tests at 300 °C. However, the COF value measured on the Al2O3/NCD films in the tests at 450 °C is lower than that for the NCD film. A relatively short run-in period and a stable COF value of about 0.15 were observed at this temperature for the Al2O3/NCD films. The width of the wear scars measured on the Al2O3/NCD films after the tests at 450 °C is significantly smaller in comparison with the NCD film. The apparent wear volume of the wear scar on the NCD film tested at 450 °C was noticeably higher than that on the Al2O3/NCD films.


Wear ◽  
1997 ◽  
Vol 208 (1-2) ◽  
pp. 105-112 ◽  
Author(s):  
A Molinari ◽  
G Straffelini ◽  
B Tesi ◽  
T Bacci

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mokgadi Nomsa Mokgalaka ◽  
Sisa Lesley Pityana ◽  
Patricia Abimbola Idowu Popoola ◽  
Tebogo Mathebula

The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental powder mixtures. The effect of varying the Ti content in the NiTi composition on the microstructure and wear properties of the coatings was investigated. The microstructure of the NiTi intermetallic coatings were characterized by the scanning electron microscope (SEM) equipped with Energy Dispersive Spectroscope (EDS). The wear properties of the coatings were performed under accelerated dry sliding wear tests. The results obtained from the SEM/EDS analysis; show that the coatings consist of Ni and Ti elements from the feedstock, and the NiTi, NiTi2and NiTi3, intermetallic phases. Dry sliding wear analysis revealed that there is correlation between the hardness and the wear rate. The coatings displayed significant improvement in wear resistance up to 80% compared to the substrate.


2018 ◽  
Vol 93 ◽  
pp. 289-299 ◽  
Author(s):  
Qiancheng Liu ◽  
Zhongyu Liu ◽  
Xingwei Wang ◽  
Guozhi Liu ◽  
Qingkun He ◽  
...  

2008 ◽  
Vol 22 (31n32) ◽  
pp. 6127-6132 ◽  
Author(s):  
J. E. LEE ◽  
Y. S. KIM ◽  
T. W. KIM

Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO 2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ε- Co ( hcp ) to α- Co ( fcc ). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.


Sign in / Sign up

Export Citation Format

Share Document