scholarly journals Effect of Laser Remelting on Cladding Layer of Inconel 718 Superalloy Formed by Laser Metal Deposition

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4927 ◽  
Author(s):  
Bo Xin ◽  
Jiangyu Ren ◽  
Xiaoqi Wang ◽  
Lida Zhu ◽  
Yadong Gong

The brittle phase (Laves) of Inconel 718 parts formed by laser metal deposition (LMD) represents a bottleneck of the engineering applications. In order to investigate effectiveness of laser remelting (LR) technology on suppressing the formation of Laves phase, different laser scanning speeds of the LR process were adopted to build and remelt the single-pass cladding layers. The evolution of phase composition, microstructural morphology, and hardness of the LMD and LMD + LR specimens were analyzed. The experimental results show that different laser scanning speeds can obviously change the microstructural evolutions, Laves phase, and hardness. A low laser scanning speed (360 mm/min) made columnar dendrite uninterruptedly grow from the bottom to the top of the cladding layer. A high laser scanning speed (1320 mm/min) has a significant effect on refining Laves phase and reducing Nb segregation. When the laser scanning speed of LR process is equal to that of LMD, the cladding layers can be completely remelted and the content of Laves phase of the LMD + LR layer is 22.4% lower than that of the LMD layer. As the laser scanning speed increases from 360 to 1320 mm/min, the mean primary dendrite arm spacing (PDAS) values of the remelting area decrease from 6.35 to 3.28 μm gradually. In addition, the low content of Laves phase and porosity contribute to the growth of average hardness. However, the laser scanning speed has a little effect on the average hardness and the maximum average hardness difference of the LMD and LMD + LR layers is only 12.4 HV.

2013 ◽  
Vol 395-396 ◽  
pp. 1127-1131 ◽  
Author(s):  
Wei Zhang

The experiments of laser cladding on the surface of 20 steel were made. High-chromium (Cr) cast iron powder was used as cladding material. The microstructure and hardness of laser cladding layers under different scanning speed were studied. The experiments showed that high-Cr cast iron cladding layer had better properties such as minute crystals, high density, no crack, no gas cavity and good metallurgical bonding with base metal. When the scanning speed was low, such as 10mm/min, the microstructure of cladding layer was cellular dendrite. There were much carbide with the shape of fish-bone distributing among cellular grains. Under higher scanning speed (from 100mm/min to 300mm/min), needle-shaped primary cementite would come into being. When laser scanning speed was 500mm/min, the carbide of cladding zone was very thin. With the increasing of laser scanning speed, the average hardness of cladding zone increased from 388HV0.2 to 580 HV0.2.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 912 ◽  
Author(s):  
Yuelong Yu ◽  
Min Zhang ◽  
Yingchun Guan ◽  
Peng Wu ◽  
Xiaoyu Chong ◽  
...  

The surface of bainitic steel was remelted by fiber laser, and the microstructure and mechanical properties of the melted layer were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), a nanoindentation instrument, and wear equipment. The study of changing the laser scanning speed showed that the depth of the melted layer increases with decreases of the laser scanning speed. The wear-resistance property increased by 55% compared with the matrix and decreased with the reduction of laser scanning speed within a certain range. In the study of changing the laser-scanning space, the thermal effect of laser melting in the back channel on the front channel was further validated. At the same time, it was found that the solidified layer surface of hardness alternating with softness can be obtained by appropriately expanding the scanning space, which is conducive to improving the wear-resistant properties of the steel surface, and properly improving the production efficiency of the laser remelting treatment.


2011 ◽  
Vol 138-139 ◽  
pp. 732-736
Author(s):  
Ba Sheng Ouyang ◽  
Run Juan You

Cladding experiment with parameter variations was presented to manufacture the better processing property coating by laser cladding self-fused Ni-based ceramic powder of ZrO2 composite on the excircle surface of 304 SUS. The influence of the laser process parameters on macroscopic view, microstructure and micro-hardness of the laser cladding layers were investigated. The results show that we can get better coating when laser power is 1.5KW, and that the cladding layer microstructure has the trend of refined framework with the growing of scanning speed; micro-hardness will be higher and distribution from substratum to surface with little fluctuate by optimizing scanning speed.


2013 ◽  
Vol 668 ◽  
pp. 283-287
Author(s):  
Sheng Feng Zhou ◽  
Xiao Qin Dai

In order to characterize the dissolution of cast WC particles in Ni-based WC coatings by laser induction hybrid rapid cladding, NiCrBSi+50 wt.% WC coatings are produced on A3 steel by low and high speed laser induction hybrid cladding (LIHC). When laser scanning speed is only 600 mm/min, the crack-free coating has pores and its dilution is as high as 45%. At the bottom of coating, the cast WC particles are dissolved completely and the herringbone M6C eutectics are precipitated. In the center of coating, the cast WC particles are also dissolved completely and the acicular, blocky and dendritic carbides with relatively low hardness are precipitated. At two sides of coating, some cast WC particles are dissolved partially and interact with Ni-based alloy to form an alloyed reaction layer, while others preserve the primary eutectic structure and high hardness. When laser scanning speed and powder feeding rate are increased to 1500 mm/min and 85.6 g/min, the coating has cracks but no pores. Its dilution can be markedly decreased to 7.8%. Moreover, a majority of WC particles are still composed of primary eutectic structure and keep their high hardness, which can play a positive role in strengthening Ni-based metallic matrix.


2021 ◽  
Vol 410 ◽  
pp. 203-208
Author(s):  
I.S. Loginova ◽  
N.A. Popov ◽  
A.N. Solonin

In this work we studied the microstructure and microhardness of standard AA2024 alloy and AA2024 alloy with the addition of 1.5% Y after pulsed laser melting (PLM) and selective laser melting (SLM). The SLM process was carried out with a 300 W power and 0.1 m/s laser scanning speed. A dispersed microstructure without the formation of crystallization cracks and low liquation of alloying elements was obtained in Y-modified AA2024 aluminum alloy. Eutectic Al3Y and Al8Cu4Y phases were detected in Y-modified AA2024 aluminum alloy. It is led to a decrease in the formation of crystallization cracks The uniform distribution of alloying elements in the yttrium-modified alloy had a positive effect on the quality of the laser melting zone (LMZ) and microhardness.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940014
Author(s):  
Ruifeng Li ◽  
Yi Qiu ◽  
Yanyan Zhu

A Ni–Fe–B–Si–Nb amorphous alloy was deposited on a steel substrate surface via a laser cladding process, and a laser cladding plus laser remelting process. The wear behavior of the laser processed samples and the bulk metallic glass (BMG) sample with the same nominal composition were tested using a pin-on-disc type testing machine. The nano-mechanical properties of the samples were measured with a nano-characterization system. The friction wear tests showed that deep grooves and wear debris were formed on the worn surface of the laser cladded coating, while only shallow grooves for the laser remelted coatings. The friction coefficients of laser remelted coatings and BMG were lower than the laser cladded coating. The wear mass losses of the laser remelted coating were less than the BMG when the laser remelting scanning speed was higher than 6 mm/min. The nano-hardness and elastic modulus of the remelted coating is higher than that of the laser cladded coating. Also, they increase with the increasing laser scanning speed with 1227.9 HV and 277.4 GPa when the remelting scanning speed is 8 m/min. Based on the nano-indentation and friction wear tests results, it was found that the friction wear properties of the laser cladded coating, laser remelted coatings and BMG related well to the ratio of H3/E2. A higher value of H3/E2 can lead to a better wear resistance property.


Sign in / Sign up

Export Citation Format

Share Document