scholarly journals Sound-Assisted Fluidization for Temperature Swing Adsorption and Calcium Looping: A Review

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 672
Author(s):  
Federica Raganati ◽  
Paola Ammendola

Fine/ultra-fine cohesive powders find application in different industrial and chemical sectors. For example, they are considered in the framework of the Carbon Capture and Storage (CCS), for the reduction of the carbon dioxide emissions to the atmosphere, and in the framework of the thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Therefore, developing of technologies able to handle/process big amounts of these materials is of great importance. In this context, the sound-assisted fluidized bed reactor (SAFB) designed and set-up in Naples represents a useful device to study the behavior of cohesive powders also in the framework of low and high temperature chemical processes, such as CO2 adsorption and Ca-looping. The present manuscript reviews the main results obtained so far using the SAFB. More specifically, the role played by the acoustic perturbation and its effect on the fluid dynamics of the system and on the performances/outcomes of the specific chemical processes are pointed out.

2021 ◽  
Vol 7 (3) ◽  
pp. 58
Author(s):  
Carolina Font-Palma ◽  
David Cann ◽  
Chinonyelum Udemu

Our ever-increasing interest in economic growth is leading the way to the decline of natural resources, the detriment of air quality, and is fostering climate change. One potential solution to reduce carbon dioxide emissions from industrial emitters is the exploitation of carbon capture and storage (CCS). Among the various CO2 separation technologies, cryogenic carbon capture (CCC) could emerge by offering high CO2 recovery rates and purity levels. This review covers the different CCC methods that are being developed, their benefits, and the current challenges deterring their commercialisation. It also offers an appraisal for selected feasible small- and large-scale CCC applications, including blue hydrogen production and direct air capture. This work considers their technological readiness for CCC deployment and acknowledges competing technologies and ends by providing some insights into future directions related to the R&D for CCC systems.


2021 ◽  
Vol 25 (1) ◽  
pp. 574-586
Author(s):  
Marta Bertolini ◽  
Fosca Conti

Abstract Carbon dioxide emissions are strongly related to climate change and increase of global temperature. Whilst a complete change in producing materials and energy and in traffic and transportation systems is already in progress and circular economy concepts are on working, Carbon Capture and Storage (CCS) and Carbon Capture and Utilisation (CCU) represent technically practicable operative strategies. Both technologies have main challenges related to high costs, so that further advanced research is required to obtain feasible options. In this article, the focus is mainly on CCU using microalgae that are able to use CO2 as building block for value-added products such as biofuels, EPS (Extracellular Polymeric Substances), biomaterials and electricity. The results of three strains (UTEX 90, CC 2656, and CC 1010) of the microalgal organism Chlamydomonas reinhardtii are discussed. The results about ideal culture conditions suggest incubation temperature of 30 °C, pH between 6.5 and 7.0, concentrations of acetate between 1.6 and 2.3 g L–1 and of ammonium chloride between 0.1 and 0.5 g L–1, the addition of glucose This green microalga is a valid model system to optimize the production of biomass, carbohydrates and lipids.


2007 ◽  
Vol 25 (5) ◽  
pp. 357-392 ◽  
Author(s):  
Havva Balat ◽  
Cahide Öz

This article deals with review of technical and economic aspects of Carbon Capture and Storage. Since the late 1980s a new concept is being developed which enables to make use of fossil fuels with a considerably reduced emission of carbon dioxide to the atmosphere. The concept is often called ‘Carbon Capture and Storage’ (CCS). CCS technologies are receiving increasing attention, mainly for their potential contribution to the optimal mitigation of carbon dioxide emissions that is intended to avoid future, dangerous climate change. CCS technologies attract a lot of attention because they could allow “to reduce our carbon dioxide emissions to the atmosphere whilst continuing to use fossil fuels”. CCS is not a completely new technology, e.g., the United States alone is sequestering about 8.5 MtC for enhanced oil recovery each year. Today, CCS technologies are widely recognised as an important means of progress in industrialized countries.


2021 ◽  
Vol 345 ◽  
pp. 00011
Author(s):  
Ondřej Bartoš ◽  
Matěj Hrnčíř

An aim of the paper is to show recent data obtained from a new experimental set-up build for the production of the CO2 gas hydrates. The purpose of the experimental set-up is to analyse the practical aspects of the transformation gaseous CO2 to the hydrates. The deserving effort to decrease impacts of the global warming is containing the more questionable attempt to capture the CO2 produced within the electricity production and to avoid a releasing to the atmosphere. The storage in the form of the gas hydrates present an alternative way to more known technologies involved in the projects of CCS (Carbon Capture and Storage). The production of the gas hydrate is observed in the set-up with simultaneously acquired data of state condition close to the phase boundary. The presented work has two goals, first is the estimation of the transformation efficiency of the CO2 to the hydrates in compare with the theory and second goal is obtaining of the data for new CO2 hydrates production set-up with liquid circulation and possibility to separate pure hydrate. The experimental analysis of the gas hydrates production process can help to estimate the practical aspects of the hydrates production for a possibility of CO2 storage in this form.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 331 ◽  
Author(s):  
Claudia Sanchez Moore ◽  
Luiz Kulay

This study examined the effect of Carbon Capture and Storage units on the environmental, energy and economic performance of the Brazilian electric grid. Four scenarios were established considering the coupling of Calcium Looping (CaL) processes to capture CO2 emitted from thermoelectric using coal and natural gas: S1: the current condition of the Brazilian grid; S2 and S3: Brazilian grid with CaL applied individually to coal (TEC) and gas (TGN) operated thermoelectric; and S4: CaL is simultaneously coupled to both sources. Global warming potential (GWP) expressed the environmental dimension, Primary Energy Demand (PED) was the energy indicator and Levelised Cost of Energy described the economic range. Attributional Life Cycle Assessment for generation of 1.0 MWh was applied in the analysis. None of the scenarios accumulated the best indexes in all dimensions. Regarding GWP, S4 totals the positive effects of using CaL to reduce CO2 from TEC and TGN, but the CH4 emissions increased due to its energy requirements. As for PED, S1 and S2 are similar and presented higher performances than S3 and S4. The price of natural gas compromises the use of CaL in TGN. A combined verification of the three analysis dimensions, proved that S2 was the best option of the series due to the homogeneity of its indices. The installation of CaL in TECs and TGNs was effective to capture and store CO2 emissions, but the costs of this system should be reduced and its energy efficiency still needs to be improved.


2021 ◽  
pp. 0958305X2110509
Author(s):  
R Maniarasu ◽  
Sushil Kumar Rathore ◽  
S. Murugan

In today’s world, owing to industrial expansion, urbanization, the rapid growth of the human population, and the high standard of living, the utilization of the most advanced technologies is unavoidable. The enhanced anthropogenic activities worldwide result in a continuous increase in global warming potential, thereby raising a global concern. The constant rise in global warming potential forces the world to mitigate greenhouse gases, particularly carbon dioxide. Carbon dioxide is considered as the primary contributor responsible for global warming and climatic changes. The global anthropogenic carbon dioxide emissions released into the atmosphere can eventually deteriorate the environment and endanger the ecosystem. Combating global warming is one of the main challenges in achieving sustainable development. Carbon capture and storage is a potential solution to mitigate carbon dioxide emissions. There are three main methods for carbon capture and storage: post-combustion, pre-combustion, and oxy-fuel combustion. Among them, post-combustion is used in thermal power plants and industrial sectors, all of which contribute a significant amount of carbon dioxide. Different techniques such as physical and chemical absorption, physical and chemical adsorption, membrane separation, and cryogenic distillation used for carbon capture are thoroughly discussed and presented. Currently, there are various materials including absorbents, adsorbents, and membranes used in carbon dioxide capture. Still, there is a search for new and novel materials and processes for separating and capturing carbon dioxide. This review article provides a comprehensive review of different methods, techniques, materials, and processes used for separating and capturing carbon dioxide from significant stationary point sources.


2020 ◽  
Author(s):  
Ulrich Wolfgang Weber ◽  
Katja Heeschen ◽  
Martin Zimmer ◽  
Martin Raphaug ◽  
Klaus Hagby ◽  
...  

<p>The ECCSEL Svelvik CO<sub>2</sub> Field Lab outside Oslo has been set up for water and CO<sub>2</sub> injection experiments. At the site, ongoing and future investigations on monitoring techniques for carbon capture and storage (CCS) shall support the development of CCS as a climate change mitigation technology in Norway.</p><p>In 2019, four 100 m deep injection wells with a sophisticated physical monitoring setup were established. For chemical monitoring a fluid sampling system at injection depth was installed and coupled to a continuously measuring mass spectrometer for observing CO<sub>2</sub> distribution. Alongside, a network of soil gas flux chambers (LI-COR 8100) were set up to monitor possible surface leakages.</p><p>The field lab is placed in a sand quarry within the Svelvik Ridge consisting of Holocene, siliciclastic sediments. Injection is conducted into a saltwater aquifer at 65m, supposedly sealed by clay strata. We sampled the upper fresh water aquifer at 6.5m depth and the storage aquifer at 64 - 65 m depth on dissolved gases before injection in order to design a noble gas tracer for the CO<sub>2</sub> injection experiment. Elevated helium concentrations in the saline aquifer indicate natural radiogenic accumulation; meanwhile krypton concentrations were not naturally increased.</p><p>During an injection experiment in fall 2019, we added noble gases, i.e. krypton and helium, in two subsequent injection cycles, three days and one week, respectively. Outgassing was observed and high helium concentrations verified a leakage at the injection well, which we quantified with a flux chamber.</p>


Author(s):  
Naomi E. Vaughan ◽  
Timothy M. Lenton

We use a simple carbon cycle–climate model to investigate the interactions between a selection of idealized scenarios of mitigated carbon dioxide emissions, carbon dioxide removal (CDR) and solar radiation management (SRM). Two CO 2 emissions trajectories differ by a 15-year delay in the start of mitigation activity. SRM is modelled as a reduction in incoming solar radiation that fully compensates the radiative forcing due to changes in atmospheric CO 2 concentration. Two CDR scenarios remove 300 PgC by afforestation (added to vegetation and soil) or 1000 PgC by bioenergy with carbon capture and storage (removed from system). Our results show that delaying the start of mitigation activity could be very costly in terms of the CDR activity needed later to limit atmospheric CO 2 concentration (and corresponding global warming) to a given level. Avoiding a 15-year delay in the start of mitigation activity is more effective at reducing atmospheric CO 2 concentrations than all but the maximum type of CDR interventions. The effects of applying SRM and CDR together are additive, and this shows most clearly for atmospheric CO 2 concentration. SRM causes a significant reduction in atmospheric CO 2 concentration due to increased carbon storage by the terrestrial biosphere, especially soils. However, SRM has to be maintained for many centuries to avoid rapid increases in temperature and corresponding increases in atmospheric CO 2 concentration due to loss of carbon from the land.


2017 ◽  
Vol 61 (4) ◽  
pp. 143-148 ◽  
Author(s):  
J. Poláčková ◽  
J. Petrů ◽  
M. Janák ◽  
J. Berka ◽  
A. Krausová

Abstract Carbon Capture and Storage (CCS) technologies are a perspective solution to reduce the amount of CO2 emissions. One of promising methods is Ca-looping, which is based on carbonation and calcination reactions. During both of these processes, especially calcination, high temperatures (650-950°C) are required. This means high demands on the corrosion resistance of equipment materials. Therefore, we carried out a study to suggest materials with suitable properties for calciner construction, which have to be particularly heat resistant: stainless steels (AISI 304, AISI 316L and AISI 316Ti) and nickel alloys (Inconel 713, Inconel 738, Incoloy 800H). A special device simulating calciner environment was built for this purpose. Chosen materials were tested in temperature 900°C, atmospheric pressure and gaseous environment with composition that can be possible in a calciner. The surfaces of materials were evaluated to determine composition and properties of formed oxide layers. High temperature oxidation was observed on all tested materials and oxide exfoliation occurred on some of tested materials (304, 316L).


Sign in / Sign up

Export Citation Format

Share Document