scholarly journals Study on the Expansion Dynamics of MDCK Epithelium by Interstitial Flow Using a Traction Force-Measurable Microfluidic Chip

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 935
Author(s):  
Mirim Kim ◽  
Hwanseok Jang ◽  
Yongdoo Park

The movement of collective cells is affected through changes in physical interactions of cells in response to external mechanical stimuli, including fluid flow. Most tissues are affected by fluid flow at the interstitial level, but few studies have investigated the physical effects in collective cells affected by a low flow rate. In this study, collective cell migration of Madin–Darby canine kidney (MDCK) epithelial cells was investigated under static or interstitial flow (0, 0.1, and 1 μL/min) using a traction microfluidic device. The optimization of calculation of cellular traction forces was first achieved by changing interrogation window size from the fluorescent bead images. Migration analysis of cell collectives patterned with a 700 μm circular shape reveals that cells under the slow flow (0.1 and 1 μL/min) showed the inhibitory migration by decreasing cell island size and cellular speed compared to that of static condition. Analysis of cellular forces shows that level of traction forces was lower in the slow flow condition (~20 Pa) compared to that of static condition (~50 Pa). Interestingly, the standard deviation of traction force of cells was dramatically decreased as the flow rate increased from 0 to 1 μL/min, which indicates that flow affects the distribution of cellular traction forces among cell collectives. Cellular tension was increased by 50% in the cells under the fluid flow rate of 1 μL/min. Treatment of calcium blocker increased the migratory speed of cells under the flow condition, whereas there is little change of cellular forces. In conclusion, it has been shown that the interstitial flow inhibited the collective movement of epithelial cells by decreasing and re-distributing cellular forces. These findings provide insights into the study of the effect of interstitial flow on cellular behavior, such as development, regeneration, and morphogenesis.

2018 ◽  
Author(s):  
Brian P. Griffin ◽  
Christopher J. Largaespada ◽  
Nicole A. Rinaldi ◽  
Christopher A. Lemmon

AbstractMany methods exist for quantifying cellular traction forces, including traction force microscopy and microfabricated post arrays. However, these methodologies have limitations, including a requirement to remove cells to determine undeflected particle locations and the inability to quantify forces of cells with low cytoskeletal stiffness, respectively. Here we present a novel method of traction force quantification that eliminates both of these limitations. Through the use of a hexagonal pattern of microcontact-printed protein spots, a novel computational algorithm, and thin surfaces of polydimethyl siloxane (PDMS) blends, we demonstrate a system that quantifies cellular forces on a homogeneous surface that is stable, easily manufactured, and can quantify forces without need for cellular removal.


2016 ◽  
Vol 113 (10) ◽  
pp. 2660-2665 ◽  
Author(s):  
Juliane Zimmermann ◽  
Brian A. Camley ◽  
Wouter-Jan Rappel ◽  
Herbert Levine

Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell–cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin–Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell–cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 927
Author(s):  
Ki-Taek Lim ◽  
Dinesh-K. Patel ◽  
Sayan-Deb Dutta ◽  
Keya Ganguly

Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for bone regeneration in tissue engineering. The present study aimed to design and develop a fluid flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs. We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of hMSCs and found that the cultured cells retained their stemness potential. We also evaluated the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate. Enhanced mineralization and alkaline phosphatase activity were also observed under different perfusion conditions compared to the static conditions, indicating that the applied conditions play important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static conditions and found that they were significantly affected by the applied conditions. Furthermore, the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition for osteogenic differentiation. Taken together, the findings of this study reveal that the developed cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used in the field of tissue engineering.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


2021 ◽  
Author(s):  
P. Merit Ekeregbe

Abstract Saturation logging tool is one key tool that has been successfully used in the Oil and Gas Industry. As important as the tool is, it should not be mistaken for a decision tool, rather it is a tool that aids decision making. Because the tool aids decision making, the decision process must be undertaken by interdisciplinary team of Engineers with historical knowledge of the tool and the performance trend of the candidate well and reservoir. No expertise is superior to historical data of well and reservoir performance because the duo follows physics and any deviation from it is attributable to a misnomer. The decision to re-enter a well for re-perforation or workover must be supported by historical production and reasonable science which here means that trends are sustained on continuous physics and not abrupt pulses. Any interpretation arising from saturation logging tools without subjecting same to reasonable science could result in wrong action. This paper is providing a methodology to enhance thorough screening of candidates for saturation logging operations. First is to determine if the candidate well is multilevel and historical production above critical gas rate before shut-in to screen-out liquid loading consideration. If any level is plugged below any producing level, investigate for micro-annuli leakage. All historical liquid loading wells should be flowed at rate above critical rate and logged at flow condition. Static condition logging is only good for non-liquid loading wells. The use of any tool and its interpretation must be subjective and there comes the clash between the experienced Sales Engineer and the Production/Reservoir Engineer with the historical evidence. A simple historical trending and analysis results of API gravity and BS&W were used in the failed plug case-study. Further successful investigation was done and the results of the well performance afterwards negated the interpretation arising from the saturation tool which saw the reservoir sand flushed. The lesson learnt from the well logging and interpretation shows that when a well is under any form of liquid loading, interpretation must be subjective with reasonable science and historical production trend is critical. It is recommended that when a well is under historical liquid loading rate, until the rate above the critical rate is determined, no logging should be done and when done, logging should be at flow condition and the interpretation subject to reasonable system physics.


1999 ◽  
Author(s):  
Daniel P. Nicolella ◽  
Eugene Sprague ◽  
Lynda Bonewald

Abstract It has been shown that bone cells are more responsive to fluid flow induced shear stress as compared to applied substrate strain (Owan, et al., 1997, Smalt, et al., 1997). Using novel micromechanical analysis techniques, we have measured individual cell strains resulting from 10 minutes of continuous fluid flow at a flow rate that produces a shear stress of 15 dyne/cm2. Individual cell strains varied widely from less than 1.0% to over 25% strain within the same group of cells. The increased sensitivity of cells to fluid flow induced shear stress may be attributed to much greater cellular deformations resulting from fluid flow induced sheer stress.


1956 ◽  
Vol 23 (2) ◽  
pp. 269-272
Author(s):  
L. F. Welanetz

Abstract An analysis is made of the suction holding power of a device in which a fluid flows radially outward from a central hole between two parallel circular plates. The holding power and the fluid flow rate are determined as functions of the plate separation. The effect of changing the proportions of the device is investigated. Experiments were made to check the analysis.


Sign in / Sign up

Export Citation Format

Share Document