scholarly journals Effect of the Microstructure of the Semiconductor Support on the Photocatalytic Performance of the Pt-PtOx/TiO2 Catalyst System

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 943
Author(s):  
Katalin Majrik ◽  
Zoltán Pászti ◽  
László Korecz ◽  
Judith Mihály ◽  
Zoltán May ◽  
...  

The influence of the semiconductor microstructure on the photocatalytic behavior of Pt-PtOx/TiO2 catalysts was studied by comparing the methanol-reforming performance of systems based on commercial P25 or TiO2 from sol–gel synthesis calcined at different temperatures. The Pt co-catalyst was deposited by incipient wetness and formed either by calcination or high-temperature H2 treatment. Structural features of the photocatalysts were established by X-ray powder diffraction (XRD), electron spin resonance (ESR), X-ray photoelectron spectroscopy (XPS), optical absorption, Raman spectroscopy and TEM measurements. In situ reduction of Pt during the photocatalytic reaction was generally observed. The P25-based samples showed the best H2 production, while the activity of all sol–gel-based samples was similar in spite of the varying microstructures resulting from the different preparation conditions. Accordingly, the sol–gel-based TiO2 has a fundamental structural feature interfering with its photocatalytic performance, which could not be improved by annealing in the 400–500 °C range even by scarifying specific surface area at higher temperatures.

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2007 ◽  
Vol 27 (13-15) ◽  
pp. 4291-4296 ◽  
Author(s):  
Riccardo Polini ◽  
Alessia Falsetti ◽  
Enrico Traversa ◽  
Oliver Schäf ◽  
Philippe Knauth

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Sijia Gu ◽  
Dan Zhang ◽  
Shirong Luo ◽  
Heng Yang

Exploring a novel and efficient photocatalyst is the key research goal to relieve energy and environmental issues. Herein, Z-scheme heterojunction composites were successfully fabricated by loading g-C3N4 nanosheets (CN) on the surface of Mg1.2Ti1.8O5 nanoflakes (MT) through a simple sol-gel method followed by the calcination method. The crystalline phase, morphologies, specific surface area, and optical and electrochemical performance of the samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-disperse X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), diffuse reflectance spectroscopy (DRS), and electrochemical measurements. Considering the suitable band structures of the components, the photocatalytic performance was evaluated by photocatalytic H2O splitting and photocatalytic inactivation of Escherichia coli (E. coli). Among the samples, MT/CN-10 (the molar percentage of melamine to as-obtained Mg-Ti gel was 10%) shows superior photocatalytic performance, which the average H2 production rate was 3.57 and 7.24 times higher than those of MT and CN alone. Additionally, the efficiency of inactivating Escherichia coli (E. coli) over MT/CN-10 was 1.95 and 2.06 times higher as compared to pure MT and CN, respectively. The enhancement of the photocatalytic performance was attributed to the advantages of the extremely negative conduction band (CB) of CN and the extremely positive valence band (VB) of MT, the enhanced light absorption, and more efficient photogenerated charge carrier separation.


2006 ◽  
Vol 45 ◽  
pp. 260-265 ◽  
Author(s):  
Antônio Hortêncio Munhoz Jr. ◽  
Leila Figueiredo de Miranda ◽  
G.N. Uehara

A pseudoboehmite was obtained by sol-gel synthesis using aluminum nitrate as precursor. It was used a 2n full factorial design for studying the effect of the temperature of synthesis, the concentration of ammonium hydroxide, and the radiation dose in the product of sol-gel synthesis. The product of the synthesis was analyzed by scanning electron microscopy, x-ray diffraction of the product (after firing the pseudoboehmite at different temperatures), and it was also analyzed the temperature of endothermic and exothermic transformations using the thermo gravimetric analysis (TG) and differential scanning calorimetry (DSC). The X-ray diffraction data show that α-alumina was obtained at 1100o C.


2011 ◽  
Vol 233-235 ◽  
pp. 1188-1191
Author(s):  
Hong Cai ◽  
Yan Chen ◽  
Yun Ying Wu

Nano-TiO2 particles were prepared by sol-gel method, of which the surfaces were coated by SiO2. The coating was achieved by the hydrolysis of sodium silicate (Na2SiO3) in ammonium chloride (NH4Cl). The surface bonding, phase constitution and chemical components of the samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of the SiO2 coating process onto TiO2 surface was analyzed. Results show that SiO2 particles were immobilized on the TiO2 surface via Ti—O—Si bondings, which formed at the interface. The SiO2 layer on TiO2 surface was amorphous, the photocatalytic performance was decreased of the TiO2 while its stability was enhanced after surface modification.


2009 ◽  
Vol 7 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Giedre Nenartaviciene ◽  
Ramunas Skaudzius ◽  
Rimantas Raudonis ◽  
Aivaras Kareiva

AbstractThe aqueous sol-gel synthesis technique for the preparation of (Pb,Sr)Sr2(Y,Ca)Cu2O7±x (Pb-1212) and (Pb2,Cu)Sr2(Y,Ca)Cu2O8±x (Pb-3212) superconductors using two different complexing agents, namely 1,2-ethanediol and tartaric acid was studied. The phase transformations, composition and micro-structural features in the polycrystalline samples were studied by powder X-ray diffraction analysis (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD analysis of the ceramic samples obtained by calcination of Pb-Sr-Y-Ca-Cu-O acetate-glycolate precursor gels in air, for 10 hours at 800°C and at 825°C, showed the presence of homogeneous Pb-1212 and Pb-3212 crystallites as major phases. The XRD patterns of the ceramics obtained from Pb-Sr-Y-Ca-Cu-O acetate-tartrate precursor gels, however, showed multiphasic character. The critical temperature of superconductivity (TC (onset)) observed by resistivity measurements were found to be 91 K and 75 K for Pb-1212 and Pb-3212 samples, respectively.


2002 ◽  
Vol 737 ◽  
Author(s):  
Lidia Armelao ◽  
Davide Barreca ◽  
Manuel Bertapelle ◽  
Gregorio Bottaro ◽  
Cinzia Sada ◽  
...  

ABSTRACTThis paper is focused on the sol-gel synthesis and characterization of CuO-based nanosystems both in the form of supported films and as guest nanoclusters embedded in a silica matrix. In both cases copper acetate (Cu(CH3COO)2 · H2O) was used as Cu source and, for the CuO :SiO2 nanocomposite systems, tetraethoxysilane (Si(OC2H5)4, TEOS) was adopted as silica precursor. Films were obtained by a dip-coating procedure and subsequently treated in air between 100 and 900°C. The system evolution on thermal annealing was studied by X-ray photoelectron spectroscopy (XPS), Glancing-Incidence X-ray diffraction (GIXRD) and optical absorption. Irrespective of the processing conditions, the formation of tenorite (CuO) crystallites with nanometric dimension was observed. In the nanocomposite samples, copper was homogeneously distributed in the host matrix and stable CuO nanoclusters (φ ≈ 15 nm) were obtained.


2021 ◽  
Author(s):  
Wanzhen Zhong ◽  
Weizhang Fu ◽  
Shujuan Sun ◽  
Lingsheng Wang ◽  
Huaihao Liu ◽  
...  

Abstract Excessive N-NO3- water pollution has become a widespread and serious problem that threatens human and ecosystem health. Here, a TiO2/SiO2 composite photocatalyst was prepared via the sol-gel/hydrothermal method. TiO2 and TiO2/SiO2 were characterized by X-ray diffraction (XRD), UV-Vis differential reflectance spectroscopy (DRS), Fourier infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Afterward, the photocatalytic performance of TiO2 and TiO2/SiO2 to reduce low nitrate concentrations (30 mgN·L-1) under UV light were evaluated and the effects of different factors on this process were investigated, after which the reaction conditions were optimized. Removal rates of up to 99.93% were achieved at a hole scavenger (formic acid) concentration of 0.6 mL·L-1, a CO2 flow rate of 0.1 m3·h-1, and a TiO2 concentration of 0.9 g·L-1. In contrast, TiO2/SiO2 at a 1.4 g·L-1 concentration and a TiO2 load rate of 40% achieved a removal rate of 83.48%,But with more than 98% of nitrogen generation rate.NO2- and NH4+ were the minor products, whereas N2 was the main product.


2000 ◽  
Vol 15 (7) ◽  
pp. 1490-1495 ◽  
Author(s):  
Heriberto Pfeiffer ◽  
Pedro Bosch ◽  
Jose A. Odriozola ◽  
Alberto Lopez ◽  
Jorge A. Ascencio ◽  
...  

Li–ZrSiO4 was synthesized by the sol-gel method. Reactions were performed with different Li:Zr molar ratios: 1, 3, 5, and 6. Cell parameters changed as follows: a0 decreased and c0 increased as the Li:Zr molar ratio increased. The x-ray photoelectron spectroscopy analysis showed two kinds of oxygen atoms. The first one was attributed to ZrSiO4 oxygens. The second one was attributed to Li–O bonds. All these results were supported by a theoretical analysis. It was concluded that lithium atoms were held in interstitial positions of the ZrSiO4 structure.


2019 ◽  
Vol 14 (12) ◽  
pp. 1796-1803
Author(s):  
Jaber El Ghoul ◽  
Naglaa Abdel All

Pure Zn2SiO4 and Vanadium doped Zn2SiO4 green nanophosphor materials were synthesized using sol–gel method and thermally annealed at 1500 °C. The structural, morphology and optical properties were characterized using various techniques; X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), high resolution transmission electron microscopy (HTEM), and photoluminescence spectroscopy (PL). XRD results shown β-Zn2SiO4 phase with triclinic structure that obtained after the heat treatment of samples at 1500 °C. The PL spectrum of V-Zn2SiO4 shows an intensive emission band in the visible region centered at 526 nm. This band is related to presence of vanadium in the interfaces between Zn2SiO4 nanoparticles and the host matrix, SiO2. The interesting of these nanophosphors were attributed for its capability of showing color-tunable emissions in visible region under a single-wavelength excitation.


Sign in / Sign up

Export Citation Format

Share Document