scholarly journals Biochar from Pine Wood, Rice Husks and Iron-Eupatorium Shrubs for Remediation Applications: Surface Characterization and Experimental Tests for Trichloroethylene Removal

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1776
Author(s):  
Marta M. Rossi ◽  
Ludovica Silvani ◽  
Neda Amanat ◽  
Marco Petrangeli Papini

Nowadays porous materials from organic waste, i.e., Biochar (BC), are receiving increased attention for environmental applications. This study adds information on three BCs that have undergone a number of studies in recent years. A Biochar from pine wood, one from rice husk and one from Eupatorium shrubs enriched with Iron, labelled as PWBC, RHBC and EuFeBC respectively, are evaluated for Trichloroethylene (TCE) removal from aqueous solution. Physical-chemical description is performed by SEM-EDS and BET analysis. The decrease of TCE over time follows a pseudo-second order kinetics with increased removal by the PWBC. Freundlich and Langmuir models well fit equilibrium test data. The optimized values of the maximum adsorbed amount, qmax (mg g−1), follows this order 109.41 PWBC > 30.35 EuFeBC > 21.00 RHBC. Fixed-bed columns are also carried out. Best performance is again achieved by PWBC, which operates for a higher number of pore volume, followed by EuFeBC and RHBC. Continuous testing confirms batch studies and makes it possible to evaluate the workability of materials in configurations closer to reality. Results are promising for potential environmental application. In particular, the characterization of several classes of contaminants opens the doors to possible uses in mixed contamination cases.

2020 ◽  
Vol 12 (12) ◽  
pp. 4880
Author(s):  
Cecilia Hodúr ◽  
Naoufal Bellahsen ◽  
Edit Mikó ◽  
Virág Nagypál ◽  
Zita Šereš ◽  
...  

Agricultural wastewater poses serious risks to the environment due to how it is injudiciously used and managed. We investigated the use of pomegranate peel powder (PPP) to adsorb ammonium ions from milking parlor wastewater, which is applied as a nitrogen source for cropland fertilization despite its environmental ramifications. As a valueless by-product of juice and jam industries, PPP shows promising features and characteristics as a potential bio-adsorbent for ammonium nitrogen removal and recovery. The surface characterization of PPP was performed by zeta potential measurement and attenuated total reflectance Fourier transform infrared Spectroscopy (ATR-FTIR) analysis. The adsorption studies were carried out by batch experiments where the initial ammonium nitrogen (NH4–N) concentration of studied wastewater was 80 mg/L. The effects of different operational parameters, such as pH, adsorbent dose, contact time, stirring speed, and temperature, were investigated. From kinetic studies, the equilibrium time was found to be 120 min, achieving an 81.8% removal synonym of ~2.5 mg/g NH4–N uptake. The adsorption isotherm data fitted well with Langmuir model with correlation (R2) > 0.99. Meanwhile, the kinetics followed pseudo-second order model with correlation (R2) > 0.99.


2005 ◽  
Vol 23 (4) ◽  
pp. 323-334 ◽  
Author(s):  
Adnan Özcan ◽  
Mutlu Şahin ◽  
Asiye Safa Özcan

The adsorption of nitrate ions onto clay minerals has not been given much attention, possibly because clay surfaces are negatively charged. In order to increase the positive charge on the surface, sepiolite was modified in the present studies by treatment with dodecylethyldimethylammonium (DEDMA) bromide. After such modification, it was found that the maximum amount of nitrate ion adsorbed occurred at a pH value of 2.0. The chemical composition of natural sepiolite was determined by EDX methods and surface characterization of both natural and modified sepiolite samples was undertaken using FT-IR spectroscopic techniques. The adsorption of nitrate ions onto these adsorbents was determined by ion chromatography. The kinetic parameters of the adsorption process were calculated and it was shown that the reaction kinetic data could be fitted using the pseudo-second-order rate model. The calculated results indicate that both natural and surfactant-modified sepiolite are effective sorbents for the removal of anionic contaminants; however, the surfactant-modified sepiolite (453 mmol/kg) was more effective than the unmodified sepiolite (408 mmol/kg) in this respect. The adsorption data obtained were well described by the Freundlich adsorption isotherm.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Langmuir ◽  
2008 ◽  
Vol 24 (17) ◽  
pp. 9500-9507 ◽  
Author(s):  
Claudia Kolbeck ◽  
Manuela Killian ◽  
Florian Maier ◽  
Natalia Paape ◽  
Peter Wasserscheid ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shazia Perveen ◽  
Raziya Nadeem ◽  
Shaukat Ali ◽  
Yasir Jamil

Abstract Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R 2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C t /C o  = 0.95) and breakthrough (C t /C o  = 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.


Sign in / Sign up

Export Citation Format

Share Document