scholarly journals An Insight into the Correlation between Chemical Composition Changes of Aluminum-Iron-Polyphosphate Glasses and Thermal Properties

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2065
Author(s):  
Pawel Goj ◽  
Aleksandra Wajda ◽  
Agata Stoch ◽  
Ireneusz Krakowiak ◽  
Pawel Stoch

The present study aimed to investigate the influence of the gradual substitution of Fe2O3 by Al2O3 on the thermal properties of polyphosphate glasses. The conducted considerations based on differential scanning calorimetry (DSC) and heating microscopy thermal analysis provided much essential information about the correlation between glass chemical composition and its characteristic parameters, such as transformation temperature, specific heat, crystallization temperature, crystallization enthalpy, the activation energy of crystal growth, melting temperature, and Angell glass thermal stability. The obtained estimation of viscosity changes as a function of temperature could be very helpful for researchers to correctly plan the vitrification process and thus radioactive waste immobilization. A precise analysis of DSC curves and X-ray diffraction patterns revealed the possibility of crystallization process design in order to create materials with different levels of crystallinity and phase composition. The drawn conclusions allow choosing the glass with the optimal concentration of Al2O3 and Fe2O3, which ensures the relatively low melting temperature, viscosity, and glass crystallization ability, with application potential in nuclear waste immobilization.

2012 ◽  
Vol 512-515 ◽  
pp. 3007-3010
Author(s):  
Jing Yu Huang ◽  
Shi Lei Lv ◽  
Chen Xi Zhang ◽  
Zhi Wei Wang

This study focuses on the preparation, thermal properties of alkanes eutectic mixtures (n-Octadecane/n-Eicosane, n-Octadecane/n-Docosane and n-Heptadecane /n-Eicosane) as candidate phase change material (PCM) for low temperature latent heat storage systems in building envelopes. Their melting temperature and latent heat were tested by Differential scanning calorimetry (DSC). The testing values were closed to calculation values of accepted theory that ensured the reliability of those datas. The results indicated n-Octadecane/n-Docosane eutectic mixture was more promising PCM for buildings in terms of melting temperature (25.3°C) and latent heat values of melting (158.2J/g).


2013 ◽  
Vol 795 ◽  
pp. 451-454
Author(s):  
M.A.A. Mohd Salleh ◽  
Flora Somidin ◽  
N.Z. Noriman ◽  
Khairel Rafezi Ahmad ◽  
Ramani Mayappan ◽  
...  

Composite approach in lead-free solder development was perceived as an expectation in finding new robust solder. Accordingly, Sn-0.7Cu/re-Al composite lead-free solder with varying amount of recycled-Aluminum (0, 3.0, 3.5 and 4.0 wt.% re-Al) particulates produced from aluminum beverage cans were successfully fabricated via powder metallurgy techniques in this study. This paper focuses on the thermal properties focusing on the melting temperature of the new developed Sn-0.7Cu/re-Al lead-free composite solder. The melting temperature (Tm) of the new solders was determined using differential scanning calorimetry (DSC). The melting temperature of the composite solders has showed comparable results with the monolithic solders of Sn-0.7Cu lead-free solder.


2021 ◽  
Vol 48 (1) ◽  
pp. 68-74
Author(s):  
A. Stoyanova-Ivanova ◽  
V. Petrov ◽  
V. Petrova ◽  
L. Andreeva ◽  
I. Ilievska ◽  
...  

Abstract In modern orthodontics, thermally activated archwires are used more widely in clinical practice, because they have unique properties like superelasticity and bio-compatibility. The aim of the present study was to characterize commercial 35° C Cu-NiTi archwires in terms of their phase transition behavior, chemical composition, surface topography properties after clinical usage, as well as the influence of the autoclaving process. Materials and methods. 35° C Thermo-Active Copper NiTi (CuNiTi) of ORMCO, Glendora, CA, USA (as-received, as-received autoclaved and clinically retrieved) with rectangular cross-section and dimension 0.016x0.022 inch, were investigated. The physicochemical research was conducted via Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction Analysis (XRD). The autoclaving was done in Runyes model B autoclave. Results. The DSC results revealed the austenite start (9.8° C; 26.47° C) and austenite finish (28° C; 31.74° C) temperatures for the as-received and autoclaved archwires respectively. For clinically retrieved samples the austenite finish temperature (Af) is around 27° C. The XRD patterns of the as-received and clinically retrieved samples show almost identical diffraction patterns. Rough surface of the CuNiTi alloy was revealed by the SEM analysis. Autoclaving process seems to have no effects on archwires’ structure and chemical composition. Chemical content of the investigated as-received CuNiTi are Ni, Ti and Cu: 47.07 wt% and 46.81 wt% and 6.11 wt%, respectively. The autoclaving process seems to have little influence on the transition temperature. The results from our study showed little difference (~7 °C) in the finish transition temperatures (Af), compared to the manufacturer’s claim. No intermediate R phase was detected by DSC. Conclusion. A good knowledge of the structural changes that occur in CuNiTi alloys in the oral cavity is useful for the orthodontists in order to optimize orthodontic treatment.


10.30544/456 ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 325-334
Author(s):  
Dragan Manasijević ◽  
Ljubiša Balanović ◽  
Vladan Ćosović ◽  
Duško Minić ◽  
Milena Premović ◽  
...  

Thermal properties, including melting temperature, latent heat of melting, specific heat capacity and thermal conductivity, of a low-melting In–Sn–Zn eutectic alloy were investigated in this work. The In–Sn–Zn eutectic alloy with nominal composition 52.7In-44.9Sn-2.4Zn (at.%) was prepared by the melting of pure metals under an argon atmosphere. The conducted assessment consisted of both theoretical and experimental approaches. Differential scanning calorimetry (DSC) was used for the measurement of melting temperature and latent heat, and the obtained results were compared with the results of thermodynamic calculations. The measured melting temperature and the latent heat of melting for the In–Sn–Zn eutectic alloy are 106.5±0.1 °C and 28.3±0.1 Jg-1, respectively. Thermal diffusivity and thermal conductivity of the In–Sn–Zn eutectic alloy were studied by the xenon-flash method. The determined thermal conductivity of the investigated eutectic alloy at 25 °C is 42.2±3.4 Wm-1K-1. Apart from providing insight into the possibility for application of the investigated alloy as the metallic phase-change material, the obtained values of thermal properties can also be utilized as input parameters for various simulation processes such as casting and soldering.


2018 ◽  
Vol 929 ◽  
pp. 78-85
Author(s):  
Cahyo Budiyantoro

In order to obtain specific properties in the commercial and engineering applications, PP materials are often combined with additives. Filler is one of solid additive type that made of inorganic materials and is generally distinguished by its influence on the mechanical properties of the resulting mixture with the plastic matrix. Filler dimension less than 100 nm is often categorized as a nanofiller and added to plastics with the range of percentage from 1% up to 10%. Various studies have been conducted to know the influence of filler on mechanical properties, but this study is also conducted to investigate the effect of nanofillers on thermal properties of PP material. Thermal properties are very important to know from the stage of design, processing until the end use final product. Most plastic products are made in soft or liquid condition, the melting temperature (melting temperature, Tm) becomes the basis of the processing parameter adjustment. Investigations done by comparing the thermal properties of commercial copolymer PP material (virgin material and injection molding specimen) and PP materials containing nanofiller (virgin material and injection molding specimen) by using Differential Scanning Calorimetry (DSC), while data of mechanical properties was obtained by the tensile test. Both 1st heating and 2nd heating DSC Experiment showed that nanofilled PP need the highest endothermic effect (2.63 W/g and 1.79 W/g), but nanofiller gave no effect on melting temperature to all type of specimens (in the range of 164.3 – 166.3 °C). The elastic modulus of nanofilled PP was around 1486 Mpa, higher than non-filled PP (999 Mpa).


2019 ◽  
Vol 4 (11) ◽  
pp. 38-40
Author(s):  
Razali Thiab ◽  
Muhammad Amin ◽  
Hamdani Umar

Thermal energy storage using Phase Change Materials (PCM) is now widely applied to wall buildings. In general, PCM which is used for applications on building walls is organic PCM and has temperature range from 0℃ to 65oC. Beef tallow and coconut oil is a type of organic PCM known as Bio PCM needs to characterize by using the T-History Method. The T-History method is more accurate than Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA). This study aimed to determine the thermal properties of beef tallow/coconut oil PCM using the T-History method. The beef tallow and coconut oil as bio PCM material was used in this study with the variation are respectively: 100%, 70+30%, 60+40%, and 50+50%. Tests are carried out using the T-History method. From the results of testing and analysis obtained supercooling temperature, melting temperature, specific heat, and latent heat for bio PCM beef tallow/coconut oil. The effect of adding coconut oil mixture to beef tallow caused a decrease in melting temperature and supercooling temperature, while the specific heat and latent heat of bio PCM of beef tallow/coconut oil ranged from 2.96-2.19 kJ/kg.℃ and 101.05-72.32 kJ/kg. The result obtained that this bio PCM material of cow beef tallow/coconut oil can apply, as additional material in wall building applications.  


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3924 ◽  
Author(s):  
Mohammad A. Al-Saleh ◽  
Abdirahman A. Yussuf ◽  
Salah Al-Enezi ◽  
Roaya Kazemi ◽  
Mat Uzir Wahit ◽  
...  

In this research work, graphene nanoplatelets (GNP) were selected as alternative reinforcing nanofillers to enhance the properties of polypropylene (PP) using different compatibilizers called polypropylene grafted maleic anhydride (PP-g-MA) and ethylene-octene elastomer grafted maleic anhydride (POE-g-MA). A twin screw extruder was used to compound PP, GNP, and either the PP-g-MA or POE-g-MA compatibilizer. The effect of GNP loading on mechanical and thermal properties of neat PP was investigated. Furthermore, the influence and performance of different compatibilizers on the final properties, such as mechanical and thermal, were discussed and reported. Tensile, flexural, impact, melting temperature, crystallization temperature, and thermal stability were evaluated by using a universal testing system, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). For mechanical properties, it was found that increasing GNP content from 1 wt.% to 5 wt.% increased tensile strength of the neat PP up to 4 MPa. The influence of compatibilizers on the mechanical properties had been discussed and reported. For instance, the addition of PP-g-MA compatibilizer improved tensile strength of neat PP with GNP loading. However, the addition of compatibilizer POE-g-MA slightly decreased the tensile strength of neat PP. A similar trend of behavior was observed for flexural strength. For thermal properties, it was found that both GNP loading and compatibilizers have no significant influence on both crystallization and melting temperature of neat PP. For thermal stability, however, it was found that increasing the GNP loading had a significant influence on improving the thermal behavior of neat PP. Furthermore, the addition of compatibilizers into the PP/GNP nanocomposite had slightly improved the thermal stability of neat PP.


2020 ◽  
Vol 10 (3) ◽  
pp. 200-207
Author(s):  
Sabbir Ansari ◽  
Tasneem Fatma

Background: Poly-3-hydroxybutyrate (PHB) has attracted much consideration as biodegradable biocompatible polymer. This thermoplastic polymer has comparable material properties to polypropylene. Materials with more valuable properties may result from blending, a common practice in polymer science. Objective: In this paper, blends of PHB (extracted from cyanobacterium Nostoc muscorum NCCU- 442 with polyethylene glycol (PEG) were investigated for their thermal, tensile, hydrophilic and biodegradation properties. Methods: Blends were prepared in different proportions of PHB/PEG viz. 100/0, 98/2, 95/5, 90/10, 80/20, and 70/30 (wt %) using solvent casting technique. Morphological properties were investigated by using Scanning Electron Microscopy (SEM). Differential scanning calorimetry and thermogravimetric analysis were done for thermal properties determination whereas the mechanical and hydrophilic properties of the blends were studied by means of an automated material testing system and contact angle analyser respectively. Biodegradability potential of the blended films was tested as percent weight loss by mixed microbial culture within 60 days. Results: The blends showed good misciblity between PEG and PHB, however increasing concentrations of plasticizer caused morphological alteration as evidenced by SEM micrographs. PEG addition (10 % and above) showed significant alternations in the thermal properties of the blends. Increase in the PEG content increased the elongation at break ratio i.e enhanced the required plasticity of PHB. Rate of microbial facilitated degradation of the blends was greater with increasing PEG concentrations. Conclusion: Blending with PEG increased the crucial polymeric properties of cyanobacterial PHB.


1987 ◽  
Vol 52 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Jaroslav Vinš ◽  
Jan Šubrt ◽  
Vladimír Zapletal ◽  
František Hanousek

A method has been worked out for the reproducible preparation of Green Rust substances involving SO42-, Cl-, Br-, and I- anions. The chemical composition of the substances prepared has been followed in dependence on the synthesis conditions. The powder X-ray and electron diffraction patterns and infrared and Moessbauer spectra have been measured and discussed.


Sign in / Sign up

Export Citation Format

Share Document