scholarly journals Unified Model for Laser Doping of Silicon from Precursors

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2322
Author(s):  
Mohamed Hassan ◽  
Morris Dahlinger ◽  
Jürgen R. Köhler ◽  
Renate Zapf-Gottwick ◽  
Jürgen H. Werner

Laser doping of silicon with the help of precursors is well established in photovoltaics. Upon illumination with the constant or pulsed laser beam, the silicon melts and doping atoms from the doping precursor diffuse into the melted silicon. With the proper laser parameters, after resolidification, the silicon is doped without any lattice defects. Depending on laser energy and on the kind of precursor, the precursor either melts or evaporates during the laser process. For high enough laser energies, even parts of the silicon’s surface evaporate. Here, we present a unified model and simulation program, which considers all these cases. We exemplify our model with experiments and simulations of laser doping from a boron oxide precursor layer. In contrast to previous models, we are able to predict not only the width and depth of the patterns on the deformed silicon surface but also the doping profiles over a wide range of laser energies. In addition, we also show that the diffusion of the boron atoms in the molten Si is boosted by a thermally induced convection in the silicon melt: the Gaussian intensity distribution of the laser beam increases the temperature-gradient-induced surface tension gradient, causing the molten Si to circulate by Marangoni convection. Laser pulse energy densities above H > 2.8 J/cm2 lead not only to evaporation of the precursor, but also to a partial evaporation of the molten silicon. Without considering the evaporation of Si, it is not possible to correctly predict the doping profiles for high laser energies. About 50% of the evaporated materials recondense and resolidify on the wafer surface. The recondensed material from each laser pulse forms a dopant source for the subsequent laser pulses.

1999 ◽  
Vol 17 (4) ◽  
pp. 785-791
Author(s):  
I.G. LEBO ◽  
S.YU. GUS'KOV ◽  
V.V. DEMCHENKO ◽  
V.V. NIKISHIN ◽  
V.F. TISHKIN ◽  
...  

A possibility of input of high-power laser pulse into a cavity through a hole was studied by means of 2D numerical calculations. Such tasks appear in view of investigation of the effective targets with internal input of energy (Bessarab et al. 1992; Basov et al. 1998), “cannon-ball” (Hogan 1989), “Greenhouse” targets (Gus'kov et al. 1995).We have used two Euler codes “NUTCY” and “FAKEL” to model the problems of laser beam input into a cavity through the holes.


Author(s):  
A. P. Yelistratov

Semiconductor laser has some features that make it an efficient tool for surface treatment of metals, in particular for surface strengthening. It provides high enough concentration of energy in the heat spot, possibility to adjust process parameters in wide range. Insignificant, compare to other types of laser, energy density eliminates an extensive penetration and internal melting of the metal, which is very important for surface treatment and for the wear resistant covering.Method of metal layers deposition by feeding a metal strip and its melting by laser beam was developed. Metallurgical processes of the deposit lay forming were investigated; method of feeding the filler strip was optimized.


2011 ◽  
Vol 29 (3) ◽  
pp. 345-351 ◽  
Author(s):  
C.M. Brenner ◽  
J.S. Green ◽  
A.P.L. Robinson ◽  
D.C. Carroll ◽  
B. Dromey ◽  
...  

AbstractThe scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15–380 mJ at intensities of 1016–1018 W/cm2. The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.


2021 ◽  
Vol 39 (1B) ◽  
pp. 197-202
Author(s):  
Ghufran S. Jaber ◽  
Khawla S. Khashan ◽  
Maha J. Abbas

The effects of varying laser pulse numbers on the fabricated of ZnONPs by pulsed laser ablation in deionized water of Zn-metal are investigated. The Nd: YAG laser at energy 600mJ prepared three samples by change the laser pulse number (100, 150, and 200). The results were collected and examined using an electron scanning microscope, XRD – diffraction, and transmission electron microscope. The result revealed the colloidal spherical shape and the homogeneous composition of the ZnO NPs. The nanoparticles resulted in different concentrations and sized distributions by changing the pulse number of a laser. The average particle size and the mass concentration of particle size increase with an increasing number of laser pulses by fixed the laser energy.


Author(s):  
S. Vasanth ◽  
T. Muthuramalingam

There is a quite wide range of animal leathers such as cow leather, sheep leather and buffalo leather used for leather garments and leather goods such as bags, wallets and other customized leather articles. The drawbacks of manual cutting can be eliminated by laser-based cutting. However, unwanted carbonization is happened owing to the higher thermal influence. There is no standard procedure or method available to measure the carbonization region on leather cutting. Diode lasers can process leather rapidly and efficiently. In the present work, an attempt was proposed to introduce the image processing-based measurement approach in leather cutting using CO2 laser and diode laser. The cutting experiments were performed on sheep leather with a thickness of 1 mm. It was found that the proposed can effectively measure the heat-affected zone (HAZ) of leather cutting. It has also been found that diode laser could produce lower HAZ than CO2 laser on leather cutting.


1977 ◽  
Vol 57 (1) ◽  
pp. 1-8
Author(s):  
A. R. MACK ◽  
E. J. BRACH

Samples of granular materials illuminated with a 20 m Watt (average power) laser energy source at a wavelength of 337.1 nm differed in their fluorescence spectra over a wide range of wavelengths from approximately 380 to 660 nm. The fluorescent yield was usually higher with increased fineness of grain size and with increased concentration of clay (> 10% of under 2-μ grain size). However, sandy soils containing a low content of clay (i.e. < 10%) had a higher yield than the regression estimate. Modifying the fluorosensor for greater resolution at a higher energy level (1 nm bandwidth and 25 m Watt average power) resulted in eight discernible peaks between 384 and 440 nm, at 486 and at 550 nm. Overall fluorescence was markedly increased by removal of Fe coatings from the surface of the grains by a dithionite treatment. Thus, laser-induced fluorescence spectra obtained from various partially vegetated land areas by airborne laser fluorosensing may be influenced by the granular material associated with non-vegetated "open" areas.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 969 ◽  
Author(s):  
Georg Schnell ◽  
Ulrike Duenow ◽  
Hermann Seitz

Surface structuring is a key factor for the tailoring of proper cell attachment and the improvement of the bone-implant interface anchorage. Femtosecond laser machining is especially suited to the structuring of implants due to the possibility of creating surfaces with a wide variety of nano- and microstructures. To achieve a desired surface topography, different laser structuring parameters can be adjusted. The scanning strategy, or rather the laser pulse overlap and scanning line overlap, affect the surface topography in an essential way, which is demonstrated in this study. Ti6Al4V samples were structured using a 300 fs laser source with a wavelength of 1030 nm. Laser pulse overlap and scanning line overlap were varied between 40% and 90% over a wide range of fluences (F from 0.49 to 12.28 J/cm²), respectively. Four different main types of surface structures were obtained depending on the applied laser parameters: femtosecond laser-induced periodic surface structures (FLIPSS), micrometric ripples (MR), micro-craters, and pillared microstructures. It could also be demonstrated that the exceedance of the strong ablation threshold of Ti6Al4V strongly depends on the scanning strategy. The formation of microstructures can be achieved at lower levels of laser pulse overlap compared to the corresponding value of scanning line overlap due to higher heat accumulation in the irradiated area during laser machining.


1998 ◽  
Vol 4 (S2) ◽  
pp. 640-641
Author(s):  
David V. Lang

Scanning Capacitance Microscopy (SCM) was first developed in 1985 as a method for sensing tip-to-sample spacing for surface topography profiling in connection with the RCA VideoDisc. Williams and coworkers were the first to use an SCM for obtaining dC/dV doping profiles in semiconductors, albeit with a rather modest resolution of 200 nm. More recently, it has been developed as a 50-nmresolution tool for microscopic doping analysis of semiconductors by measuring the tip-to-sample rf capacitance in an AFM controlled by other means, e.g. by laser beam deflection of a cantilever tip. In this paper we report on the application of SCM to study the 2D doping profiles of InP-based devices, such as multi-quantum well lasers.It is particularly convenient to prepare cross sections of III-V devices, since the material readily cleaves on [110] planes, as compared to silicon where cross sections must be obtained by painstaking polishing.


2014 ◽  
Vol 7 (12) ◽  
pp. 4507-4516 ◽  
Author(s):  
M. D. Willis ◽  
A. K. Y. Lee ◽  
T. B. Onasch ◽  
E. C. Fortner ◽  
L. R. Williams ◽  
...  

Abstract. The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.


Sign in / Sign up

Export Citation Format

Share Document