scholarly journals Manufacturing of Al2O3/Ni/Ti Composites Enhanced by Intermetallic Phases

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3510
Author(s):  
Marcin Wachowski ◽  
Justyna Zygmuntowicz ◽  
Robert Kosturek ◽  
Katarzyna Konopka ◽  
Waldemar Kaszuwara

In this study, ceramic–metal composites in the Al2O3/Ti/Ni system were fabricated using the slip casting method. Two series of composites with 15 vol.% metal content and different solid phase contents were obtained and examined. A proper fabrication process allows obtaining composites enhanced by intermetallic phases. The microstructure of the base powders, slurries, and sintered composites was analyzed by scanning electron microscope. Analysis of the sedimentation tendency of slurries was carried out. The phase composition of the sintered samples was examined by X-ray diffraction analysis. A monotonic compression test was used to investigate the mechanical properties of the composites. A fractography investigation was also carried out. The research conducted revealed that the slip casting method allows the obtaining of composites enhanced by intermetallic phases (TiNi, Ni3Ti). The results show the correlation between solid-phase content, microstructure, and mechanical properties of the composites.

2011 ◽  
Vol 172-174 ◽  
pp. 727-732 ◽  
Author(s):  
Ileana Irais Santana ◽  
Francisco Carlos Robles Hernandez ◽  
Vicente Garibay-Febles ◽  
Hector A. Calderon

Composites of Fe-C60and Al C60produced by mechanical milling and sinterized by Spark Plasma Sintering are investigated with special attention to the mechanical properties of the products. The processing involves phase transformations of the fullerenes that are interesting to follow and characterize. This involves formation of tetragonal/rhombohedral diamond and carbides during sintering and milling. Transmission Electron Microscopy (TEM) and Raman Spectroscopy techniques are also used to confirm preliminary results of X Ray Diffraction (XRD) related to the formation of nanostructures i.e., grain size of the crystals during mechanical milling and after sintering, spatial distribution of phases and the different phases that are developed during processing.


Author(s):  
Justyna Zygmuntowicz ◽  
Joanna Łoś ◽  
Bernard Kurowski ◽  
Paulina Piotrkiewicz ◽  
Waldemar Kaszuwara

AbstractThe scope of work included the fabrication of ceramic-metal composites from the Al2O3-Cu and Al2O3-Cu-Mo and examining their microstructure and selected properties. The composites were fabricated by the slip casting method. The rheological behavior, microstructures, X-ray analysis, and mechanical properties were investigated. The rheological study demonstrated that all of the obtained slurries were non-Newtonian shear diluted fluids and stability on time. In both slurries, the flow limit is close to 0 Pa, which is very beneficial when casting the suspensions into molds. The X-ray analysis reveals Al2O3, Cu, and Mo phases in all specimens. No new phases were found in both types of composites after the sintering process. The results provided that the hardness for Al2O3-Cu-Mo composites was equal to 10.06 ± 0.49 GPa, while for Al2O3-Cu, it was equal to 6.81 ± 2.08 GPa. The K1C values measured, with the use of Niihara equation, for composites with and without the addition of Mo were equal to 6.13 ± 0.62 MPa m0.5 and 6.04 ± 0.55 MPa m0.5, respectively. It has been established that the mean specific wear rates of Al2O3-Cu and Al2O3-Cu-Mo samples were 0.35 × 10–5 ± 0.02 mm3 N−1 m−1 and 0.22 × 10–5 ± 0.04 mm3 N−1 m−1, respectively. It was found that molybdenum addition improved wear resistance properties of the composites.


2014 ◽  
Vol 1060 ◽  
pp. 128-132 ◽  
Author(s):  
Piyapoom Piyawatakarn ◽  
Chutima Limmatvapirat ◽  
Pornsak Sriamornsak ◽  
Manee Luangtana-Anan ◽  
Jurairat Nunthanid ◽  
...  

The aim of study was to determine the effect of glycerol on the properties of tapioca starch films. The films containing various amounts of glycerol (0-30 %w/w) were prepared by casting method. Texture analyzer, x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) were used to comparatively characterize the films. The result indicated that mechanical properties were depended on amount of incorporated glycerol. The films containing 0-10 %w/w of glycerol showed brittle characteristic while those containing 20-30 %w/w demonstrated elastic film, suggesting the plasticization effect of glycerol. As indicated by x-ray diffractometry, the crystallinity was increased as increasing percentage of glycerol. The 3D structural change after incorporation of glycerol in polymer chain of starch might affect the properties of films. However, the FTIR spectra did not show clear interaction between glycerol and starch. The physical entrapment of glycerol in amylose chain might be a possible explanation for the results.


2011 ◽  
Vol 194-196 ◽  
pp. 2105-2108
Author(s):  
Yan Pei Song ◽  
Hui Gai Wang

A restored WCP/Fe-C composites is manufactured by centrifugal casting method. The microstructure and properties of the restored composites have been investigated by SEM, X-ray diffraction and properties tester. The results show that the distribution of WCP in the restored composites is even, Size of WCP is obviously reduced, and their volume fraction attained to about 70 vol.%. The mechanical properties and wear behavior of the restored composites are almost the same as those of the primary composites.


2021 ◽  
Vol 39 (6) ◽  
pp. 986-995
Author(s):  
Ehab Q. Kaadhm ◽  
Khansaa D. Salman ◽  
Ahmed H. Reja

In this paper, study the effects of magnetite nanomaterial Fe3O4 on the mechanical properties of epoxy. Dispersion of Fe3O4 nanoparticles in the epoxy resin was performed by ultrasonication. The samples of the nanocomposites were prepared using the casting method. The nanocomposites contain epoxy resins as a matrix material incorporated by different weight percentages of magnetite Fe3O4 that varies from 0wt.% to 15wt.% as a reinforcing material. The epoxy with the additive reinforcement materials Fe3O4 was slowly mixed in a sonication bath for 15 minutes, then the mixture poured into silicon molds. Field Emission Scanning Electron Microscopy FESEM and X-ray diffraction spectra XRD were used to characterize the morphological and structural properties of preparing samples and the distribution of Fe3O4 nanoparticles to the epoxy resin. Mechanical testing consists of tensile, hardness shore, and three-point flexural tests were performed on the samples at room temperature according to ASTM standards. The results showed that reinforcement by 15wt.% of Fe3O4 nanoparticles maximizes these mechanical properties of nanocomposites compared with pure epoxy except for the young modulus's preferred weight at 9 wt.%, this is due to aggregation of the additives nanomaterials in epoxy resin above 9 wt.%.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


2020 ◽  
Vol 7 (21) ◽  
pp. 4197-4221 ◽  
Author(s):  
Francisco Colmenero ◽  
Jakub Plášil ◽  
Jiří Sejkora

The structure, hydrogen bonding, X-ray diffraction pattern and mechanical properties of six important uranyl carbonate minerals, roubaultite, fontanite, sharpite, widenmannite, grimselite and čejkaite, are determined using first principles methods.


Sign in / Sign up

Export Citation Format

Share Document