scholarly journals Iso- and Anisotropic Etching of Micro Nanofibrillated Cellulose Films by Sequential Oxygen and Nitrogen Gas Plasma Exposure for Tunable Wettability on Crystalline and Amorphous Regions

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3571
Author(s):  
Katarina Dimić-Mišić ◽  
Mirjana Kostić ◽  
Bratislav Obradović ◽  
Milorad Kuraica ◽  
Ana Kramar ◽  
...  

The surface of cellulose films, obtained from micro nanofibrillated cellulose produced with different enzymatic pretreatment digestion times of refined pulp, was exposed to gas plasma, resulting in a range of surface chemical and morphological changes affecting the mechanical and surface interactional properties. The action of separate and dual exposure to oxygen and nitrogen cold dielectric barrier discharge plasma was studied with respect to the generation of roughness (confocal laser and atomic force microscopy), nanostructural and chemical changes on the cellulose film surface, and their combined effect on wettability. Elemental analysis showed that with longer enzymatic pretreatment time the wetting response was sensitive to the chemical and morphological changes induced by both plasma gases, but distinctly oxygen plasma was seen to induce much greater morphological change while nitrogen plasma contributed more to chemical modification of the film surface. In this novel study, it is shown that exposure to oxygen plasma, subsequently followed by exposure to nitrogen plasma, leads first to an increase in wetting, and second to more hydrophobic behaviour, thus improving, for example, suitability for printing using polar functional inks or providing film barrier properties, respectively.

Cellulose ◽  
2019 ◽  
Vol 26 (6) ◽  
pp. 3845-3857 ◽  
Author(s):  
Katarina Dimic-Misic ◽  
Mirjana Kostić ◽  
Bratislav Obradović ◽  
Ana Kramar ◽  
Stevan Jovanović ◽  
...  

2021 ◽  
pp. 095400832098729
Author(s):  
K Sudheendra ◽  
Jennifer Vinodhini ◽  
M Govindaraju ◽  
Shantanu Bhowmik

The study involves the processing of a novel poly [1, 4-phenylene-cis-benzobisoxazole] (PBO) fibre reinforced high-temperature thermoplastic composite with polyaryletherketone (PAEK) as the matrix. The PBO fibre and the PAEK film surface was modified using the method of argon and nitrogen plasma treatment. The investigation primarily focuses on evaluating the tensile properties of the fabricated laminates and correlating it with the effect of plasma treatment, surface characteristics, and its fracture surface. A 5% decrease in tensile strength was observed post argon plasma treatment while a 27% increase in strength was observed post nitrogen plasma treatment. The morphology of the failure surface was investigated by scanning electron microscopy and an interfacial failure was observed. Furthermore, the effect of plasma on the wettability of PBO fibres and PAEK film surface was confirmed by the Dynamic Contact Angle analysis and sessile drop method respectively. FTIR spectral analysis was done to investigate the effect of plasma treatment on the chemical structure on the surface. The results of the wettability study showed that the argon plasma treatment of the fibre surface increased its hydrophobicity while nitrogen plasma treatment resulted in the reduction of contact angle.


1998 ◽  
Vol 13 (7) ◽  
pp. 2003-2014 ◽  
Author(s):  
Y. Gao ◽  
Y. J. Kim ◽  
S. A. Chambers

Well-ordered, pure-phase epitaxial films of FeO, Fe3O4, and γ–Fe2O3 were prepared on MgO(001) by oxygen-plasma-assisted MBE. The stoichiometries of these thin films were controlled by varying the growth rate and oxygen partial pressure. Selective growth of γ–Fe2O3 and α–Fe2O3 was achieved by controlling the growth conditions in conjunction with the choice of appropriate substrates. Growth of the iron oxide epitaxial films on MgO at ≥350 °C is accompanied by significant Mg outdiffusion. The FeO(001) film surface exhibits a (2 × 2) reconstruction, which is accompanied by a significant amount of Fe3+ in the surface region. Fe3O4 (001) has been found to reconstruct to a structure. γ–Fe23 (001) film surface is unreconstructed.


2014 ◽  
Vol 89 (4) ◽  
pp. 480-486 ◽  
Author(s):  
F. Almeida ◽  
F. Oliveira ◽  
R. Neves ◽  
N. Siqueira ◽  
R. Rodrigues-Silva ◽  
...  

AbstractPolycystic echinococcosis, caused by the larval stage (metacestode) of the small-sized tapeworm, Echinococcus vogeli, is an emerging parasitic zoonosis of great public health concern in the humid tropical rainforests of South and Central America. Because morphological and morphometric characteristics of the metacestode are not well known, hydatid cysts from the liver and the mesentery were examined from patients following surgical procedures. Whole mounts of protoscoleces with rostellar hooks were examined under light and confocal laser scanning microscopy. Measurements were made of both large and small hooks, including the total area, total length, total width, blade area, blade length, blade width, handle area, handle length and handle width. The results confirmed the 1:1 arrangement of hooks in the rostellar pad and indicated, for the first time, that the morphometry of large and small rostellar hooks varies depending upon the site of infection. Light and confocal microscopy images displayed clusters of calcareous corpuscles in the protoscoleces. In conclusion, morphological features of large and small rostellar hooks of E. vogeli are adapted to a varied environment within the vertebrate host and such morphological changes in calcareous corpuscles occur at different stages in the maturation of metacestodes.


1992 ◽  
Vol 12 (8) ◽  
pp. 3407-3414
Author(s):  
Y Yoshida ◽  
M Kawata ◽  
Y Miura ◽  
T Musha ◽  
T Sasaki ◽  
...  

Microinjection of either Ki-rasVal-12 p21 or the GDP-bound form of Ki-ras p21 plus smg GDP dissociation stimulator (GDS), a stimulatory GDP/GTP exchange protein for Ki-ras p21, smg/rap1/Krev-1 p21, and rho p21, into quiescent Swiss 3T3 cells induced DNA synthesis irrespective of the presence or absence of insulin. The guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-bound form of smg p21B or the GDP-bound form of smg p21B plus smg GDS also induced DNA synthesis but only in the presence of insulin. Either the GDP-bound form of Ki-ras p21 or the same form of smg p21B alone was inactive, but smg GDS alone was slightly active only in the presence of insulin. The morphology of the cells was analyzed by scanning electron, phase-contrast, and confocal laser scanning microscopies. Ki-rasVal-12 p21 induced membrane ruffling irrespective of the presence or absence of insulin. The GTP gamma S-bound form of smg p21B showed the same effect only in the presence of insulin. Either the GDP-bound form of Ki-ras p21, the same form of smg p21B, or smg GDS alone was inactive. Upon microinjection of Ki-rasVal-12 p21, stress fibers markedly decreased and the cells became round and piled up. In contrast, upon microinjection of the GTP gamma S-bound form of smg p21B, stress fibers did not markedly decrease and the cells neither became round nor piled up. These results indicate that both ras p21 and smg p21 are mitogenic in Swiss 3T3 cells but that their actions are slightly different.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tae-Yeong Bak ◽  
Min-Suk Kook ◽  
Sang-Chul Jung ◽  
Byung-Hoon Kim

Porous polycaprolactone (PCL) scaffolds were fabricated by using the CO2gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2gas foaming process was carried out by solubilizing CO2within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering.


2015 ◽  
Vol 50 (21) ◽  
pp. 6926-6934 ◽  
Author(s):  
Arttu Miettinen ◽  
Axel Ekman ◽  
Gary Chinga-Carrasco ◽  
Markku Kataja

Sign in / Sign up

Export Citation Format

Share Document