scholarly journals Study on Geometry, Dimensional Accuracy and Structure of Parts Produced by Multi Jet Fusion

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4510
Author(s):  
Martyna Adach ◽  
Paweł Sokołowski ◽  
Tomasz Piwowarczyk ◽  
Krzysztof Nowak

Multi Jet Fusion (MJF) is one of the newest additive manufacturing technologies for polymer powders, introduced in recent years. This fully industrial technology is gaining big interest as it allows fast, layer-by-layer, printing process, short production cycle, and very high printing resolution. In this paper, twelve thin-walled, spherical PA12 prints were studied in terms of geometry, dimensional accuracy, and fracture surface characteristics. The various characteristic features for MJF prints were observed here for parts produced according to four various print orientations and having different thicknesses, i.e., 1, 2 or 3 mm. The study showed that MJF technology can print such difficult shapes. However, the set of parameters allowing producing parts with highest geometrical and dimensional accuracy causes at the same time some microstructural issues, like great interlayer porosity or high number of non-processed powder particles embedded in the print structure.

2018 ◽  
Vol 1 (1) ◽  
pp. 223-231
Author(s):  
Nihat Yilmaz ◽  
Mevlüt Yunus Kayacan

Direct metal laser sintering (DMLS), one of the laser powder bed additive manufacturing technologies produces solid metal parts from 3-D CAD data, layer by layer, by melting/sintering and bonding metal powders with a focused laser beam. In this processes isn't complete melting of powder particles in micro melt pools as well as selective laser melting (SLM) and electron beam melting (EBM). Thus some different stress conditions and defects occur depending on the temperature changes during manufacturing. In this study, this problems is investigated aspect cooling rate. Cooling rate affects the solidification process in the melting (sintering) process such as casting, welding, laser assisted processes. Therefore, it also affect part quality and properties. In the scope of study, it is tried to explain how occurring the internal stresses and distortions differ depending on the cooling rates of geometrically different parts in additive manufacturing. The residual stresses and deformations are analyzed by FEA to see relation with geometry (volume, area) to cooling rate for Ti6Al4V materials. Cube shaped samples at 20, 40, 60, 80 and 100 mm edge dimensions have analysed by using FEA. Besides 10mm cube sample is manufactured as solid and verified both as experimental and numerical. Based on the FEA results, cooling rate values are changed from 1.67 to 16.67. In conclusion, the reasons of the problems occurring during laser powder bed fusion are investigated in terms of the cooling rate in relation with the samples geometry.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


2021 ◽  
Author(s):  
Mevlüt Yunus Kayacan ◽  
Nihat Yılmaz

Abstract Among additive manufacturing technologies, Laser Powder Bed Fusion (L-PBF) is considered the most widespread layer-by-layer process. Although the L-PBF, which is also called as SLM method, has many advantages, several challenging problems must be overcome, including part positioning issues. In this study, the effect of part positioning on the microstructure of the part in the L-PBF method was investigated. Five Ti6Al4V samples were printed in different positions on the building platform and investigated with the aid of temperature, porosity, microstructure and hardness evaluations. In this study, martensitic needles were detected within the microstructure of Ti6Al4V samples. Furthermore, some twins were noticed on primary martensitic lines and the agglomeration of β precipitates was observed in vanadium rich areas. The positioning conditions of samples were revealed to have a strong effect on temperature gradients and on the average size of martensitic lines. Besides, different hardness values were attained depending on sample positioning conditions. As a major result, cooling rates were found related to positions of samples and the location of point on the samples. Higher cooling rates and repetitive cooling cycles resulted in microstructures becoming finer and harder.


2021 ◽  
Author(s):  
Fábio Silva Cerejo ◽  
Daniel Gatões ◽  
Teresa Vieira

Abstract Additive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology selected. Material Extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can overcome some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions. The present study reveals an optimal methodology to produce MEX filament feedstocks (metallic powder, binder and additives), having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was established by means of the mixing torque value, which is related to the filament extrudability performance.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 84
Author(s):  
Marcin Ziółkowski ◽  
Tomasz Dyl

3D printing conquers new branches of production due to becoming a more reliable and professional method of manufacturing. The benefits of additive manufacturing such as part optimization, weight reduction, and ease of prototyping were factors accelerating the popularity of 3D printing. Additive manufacturing has found its niches, inter alia, in automotive, aerospace and dentistry. Although further research in those branches is still required, in some specific applications, additive manufacturing (AM) can be beneficial. It has been proven that additively manufactured parts have the potential to out perform the conventionally manufactured parts due to their mechanical properties; however, they must be designed for specific 3D printing technology, taking into account its limitations. The maritime industry has a long-standing tradition and is based on old, reliable techniques; therefore it implements new solutions very carefully. Besides, shipbuilding has to face very high classification requirements that force the use of technologies that guarantee repeatability and high quality. This paper provides information about current R&D works in the field of implementing AM in shipbuilding, possible benefits, opportunities and threats of implementation.


2014 ◽  
Vol 88 ◽  
pp. 60-64 ◽  
Author(s):  
Martin Schwentenwein ◽  
Peter Schneider ◽  
Johannes Homa

Albeit widely established in plastic and metal industry, additive manufacturing technologies are still a rare sight in the field of ceramic manufacturing. This is mainly due to the requirements for high performance ceramic parts, which no additive manufacturing process was able to meet to date.The Lithography-based Ceramic Manufacturing (LCM)-technology which enables the production of dense and precise ceramic parts by using a photocurable ceramic suspension that is hardened via a photolithographic process. This new technology not only provides very high accuracy, it also reaches high densities for the sintered parts. In the case of alumina a relative density of over 99.4 % and a 4-point-bending strength of almost 430 MPa were realized. Thus, the achievable properties are similar to conventional manufacturing methods, making the LCM-technology an interesting complement for the ceramic industry.


2021 ◽  
Author(s):  
Yuan Yao ◽  
Cheng Ding ◽  
Mohamed Aburaia ◽  
Maximilian Lackner ◽  
Lanlan He

Abstract The Fused Filament Fabrication process is the most used additive manufacturing process due to its simplicity and low operating costs. In this process, a thermoplastic filament is led through an extruder, melted, and applied to a building platform by the axial movements of an automated Cartesian system in such a way that a three-dimensional object is created layer by layer. Compared to other additive manufacturing technologies, the components produced have mechanical limitations and are often not suitable for functional applications. To reduce the anisotropy of mechanical strength in fused filament fabrication (FFF), this paper proposes a 3D weaving deposit path planning method that utilizes a 5-layer repetitive structure to achieve interlocking and embedding between neighbor slicing planes to improve the mechanical linkage within the layers. The developed algorithm extends the weaving path as an infill pattern to fill different structures and makes this process feasible on a standard three-axis 3D printer. Compared with 3D weaving printed parts by layer-to-layer deposit, the anisotropy of mechanical properties inside layers is significantly reduced to 10.21% and 0.98%.


2021 ◽  
Vol 12 (3) ◽  
pp. 3513-3521

Additive manufacturing is the term that uses the CAD data to build components layer by layer; it is also termed layered manufacturing or 3D printing. The major advantage of additive manufacturing is the capability of building components without the use of molds or tools. Five major categories of AM processes include Powder Bed Fusion (PBF), Direct Energy Deposition (DED), Material Jetting (MJ), Binder Jetting (BJ), and Sheet Lamination (SL). The sensor may be defined as a device that responds to a physical stimulus and transmits a resulting impulse. Sensor technology has been widely adopted in advanced manufacturing, aerospace, biomedical and robotic applications. Commonly used sensors are temperature sensors, strain sensors, biosensors, environmental sensors, and wearable sensors, etc. Additive manufacturing technologies can fabricate sensors and microfluidic devices with less labor. This paper focuses on various sensors developed by additive manufacturing processes, and their practical application for the particular purpose is reviewed.


2021 ◽  
Author(s):  
Florian Sous ◽  
Tim Herrig ◽  
Thomas Bergs ◽  
Florian Karges ◽  
Nicole Feiling ◽  
...  

Abstract Due to more freedom in design and flexibility in production, parts produced by additive manufacturing technologies (AM) offer a huge potential for the manufacture of turbomachinery components. Because of the layer by layer built structure, internal defects like cracks or gaseous pores can occur. These defects considerably reduce the mechanical properties and increase the importance of quality control, especially in the field of turbomachinery. Therefore, in this study, an electrochemical defect analysis (EC-D) of additive manufactured components is introduced, performed and validated in comparison to a nondestructive X-ray testing of the same part. A test rig was developed, which allows an alternation between electrochemical machining and subsequent optical documentation of each removed layer. The documentation of the surface and the macroscopic defects in the AM-parts are captured by an integrated camera system.


Author(s):  
Prashanth Ravi ◽  
Panos S. Shiakolas ◽  
Tre Welch ◽  
Tushar Saini ◽  
Kristine Guleserian ◽  
...  

Currently, there is a major shift in medical device fabrication research towards layer-by-layer additive manufacturing technologies; mainly owing to the relatively quick transition from a solid model (.STL file) to an actual prototype. The current manuscript introduces a Custom Multi-Modality 3D Bioprinter (CMMB) developed in-house, combining the Fused Filament Fabrication (FFF), Photo Polymerization (PP), Viscous Extrusion (VE), and Inkjet (IJ) printing technologies onto a single additive manufacturing platform. Methodologies to address limitation in the ability to customize construct properties layer-by-layer and to incorporate multiple materials in a single construct have been evaluated using open source 3D printing softwares Slic3r and Repetier-Host. Such customization empowers the user to fabricate constructs with tailorable anisotropic properties by combining different print technologies and materials. To this end, procedures which allow the integration of more than one distinct modality of the CMMB during a single print session were developed and evaluated, and are discussed. The current setup of the CMMB provides the capability to fabricate personalized medical devices using patient data from an MRI or a CT scan. Initial experiments and fabricated constructs demonstrate the potential of the CMMB for research in diverse application areas within biomedical engineering.


Sign in / Sign up

Export Citation Format

Share Document