scholarly journals Biological Characteristics and Odontogenic Differentiation Effects of Calcium Silicate-Based Pulp Capping Materials

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4661
Author(s):  
Yemi Kim ◽  
Donghee Lee ◽  
Hye-Min Kim ◽  
Minjoo Kye ◽  
Sin-Young Kim

We compared calcium silicate-based pulp capping materials to conventional calcium hydroxide in terms of their biological properties and potential effects on odontogenic differentiation in human dental pulp stem cells (hDPSCs). We cultured hDPSCs on disks (7-mm diameter, 4-mm high) of ProRoot MTA (Dentsply Tulsa Dental Specialties), Biodentine (Septodont), TheraCal LC (Bisco), or Dycal (Dentsply Tulsa Dental Specialties). Cell viability was assessed with cell counting (CCK) and scanning electron microscopy (SEM). Odontogenic activity was assessed by measuring alkaline phosphatase (ALP) activity and gene expression (quantitative real-time PCR). CCK assays showed that Dycal reduced cell viability compared to the other materials (p < 0.05). SEM showed low and absent cell attachment on TheraCal LC and Dycal disks, respectively. hDPSCs exposed to TheraCal LC and Dycal showed higher ALP activity on day 6 than the control group (p < 0.05). The day-9 Runx2 expression was higher in the ProRoot MTA and TheraCal LC groups than in the control group (p < 0.05). On day 14, the ProRoot MTA group showed the highest dentin sialophosphoprotein levels (not significant; p > 0.05). In conclusion, various pulp capping materials, except Dycal, exhibited biological properties favorable to hDPSC viability. ProRoot MTA and TheraCal LC promoted higher Runx2 expression than Biodentine. Future studies should explore the odontogenic potential of pulp capping materials.

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Xiu Peng ◽  
Sili Han ◽  
Kun Wang ◽  
Longjiang Ding ◽  
Zhenqi Liu ◽  
...  

Abstract Several novel biomaterials have been developed for dental pulp capping by inducing tertiary dentin formation. The aim of this study was to evaluate the effect of QP5, an amelogenin-based peptide, on the mineralization of dental pulp cells (DPCs) in vitro and in vivo. The cell viability of human DPCs (hDPCs) after treatment with QP5 was determined using the Cell Counting Kit-8 (CCK-8). Migration of hDPCs was assessed using scratch assays, and the pro-mineralization effect was determined using alkaline phosphatase (ALP) staining, alizarin red staining and the expression of mineralization-related genes and proteins. The results showed that QP5 had little effect on the cell viability, and significantly enhanced the migration capability of hDPCs. QP5 promoted the formation of mineralized nodules, and upregulated the activity of ALP, the expression of mRNA and proteins of mineralization-related genes. A pulp capping model in rats was generated to investigate the biological effect of QP5. The results of micro-computed tomography and haematoxylin and eosin staining indicated that the formation of tertiary dentin in QP5-capping groups was more prominent than that in the negative control group. These results indicated the potential of QP5 as a pulp therapy agent.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1259 ◽  
Author(s):  
Minsun Chung ◽  
Sukjoon Lee ◽  
Dongzi Chen ◽  
Ukseong Kim ◽  
Yaelim Kim ◽  
...  

This study aimed to analyze the effects of different calcium silicate cements (CSCs) on the inflammatory response and odontogenic differentiation of lipopolysaccharide-stimulated human dental pulp stem cells. Human dental pulp stem cells (hDPSCs) were stimulated with lipopolysaccharide (LPS) to induce inflammation. These LPS-induced dental pulp stem cells (LDPSCs) were cultured with ProRoot MTA, Biodentine, Retro MTA, and Dycal. Cell viability was evaluated using the Cell Counting Kit-8 assay. Interleukin (IL)-6, IL-8, and transforming growth factor (TGF)-β1 cytokine levels were assessed using the enzyme-linked immunosorbent assay. The expressions of alkaline phosphatase (ALP), osteocalcin, and runt-related transcription factor 2 (RUNX2) were analyzed through real-time polymerase chain reaction. ProRoot MTA, Biodentine, and Retro MTA did not significantly decrease the cell viability of LDPSCs for up to 48 h (p < 0.05). Retro MTA significantly decreased the expression of IL-6 and IL-8 by LDPSCs. ProRoot MTA and Biodentine significantly reduced TGF-β expression by LDPSCs (p < 0.05). Regarding odontogenic differentiation, all CSCs had no effect on ALP expression but increased the production of RUNX2 at 12 h.


2015 ◽  
Vol 44 (4) ◽  
pp. 195-199 ◽  
Author(s):  
Priscilla Barbosa Ferreira Soares ◽  
Camilla Christian Gomes Moura ◽  
Huberth Alexandre da Rocha Júnior ◽  
Paula Dechichi ◽  
Darceny Zanetta-Barbosa

<title>Abstract</title><sec><title>Objective</title><p>Evaluate the biological performance of titanium alloys grade IV under different surface treatments: sandblasting and double etching (Experimental surface 1; Exp1, NEODENT); surface with wettability increase (Experimental surface 2; Exp2, NEODENT) on response of preliminary differentiation and cell maturation.</p></sec><sec><title>Material and method</title><p>Immortalized osteoblast cells were plated on Exp1 and Exp2 titanium discs. The polystyrene plate surface without disc was used as control group (C). Cell viability was assessed by measuring mitochondrial activity (MTT) at 4 and 24 h (n = 5), cell attachment was performed using trypan blue exclusion within 4 hours (n = 5), serum total protein and alkaline phosphatase normalization was performed at 4, 7 and 14 days (n = 5). Data were analyzed using one-way ANOVA and Tukey test.</p></sec><sec><title>Result</title><p>The values of cell viability were: 4h: C– 0.32±0.01<sup>A</sup>; Exp1– 0.34±0.08<sup>A</sup>; Exp2– 0.29±0.03<sup>A</sup>. 24h: C– 0.43±0.02<sup>A</sup>; Exp1– 0.39±0.01<sup>A</sup>; Exp2– 0.37±0.03<sup>A</sup>. The cell adhesion counting was: C– 85±10<sup>A</sup>; Exp1- 35±5<sup>B</sup>; Exp2– 20±2<sup>B</sup>. The amounts of serum total protein were 4d: C– 40±2<sup>B</sup>; Exp1– 120±10<sup>A</sup>; Exp2– 130±20<sup>A</sup>. 7d: C– 38±2<sup>B</sup>; Exp1– 75±4<sup>A</sup>; Exp2– 70±6<sup>A</sup>. 14 d: C– 100±3<sup>A</sup>; Exp1– 130±5<sup>A</sup>; Exp2– 137±9<sup>A</sup>. The values of alkaline phosphatase normalization were: 4d: C– 2.0±0.1<sup>C</sup>; Exp1– 5.1±0.8<sup>B</sup>; Exp2– 9.8±2.0<sup>A</sup>. 7d: C– 1.0±0.01<sup>C</sup>; Exp1– 5.3±0.5<sup>A</sup>; Exp2– 3.0±0.3<sup>B</sup>. 14 d: C– 4.1±0.3<sup>A</sup>; Exp1– 4.4±0.8<sup>A</sup>; Exp2– 2.2±0.2<sup>B</sup>. Different letters related to statistical differences.</p></sec><sec><title>Conclusion</title><p>The surfaces tested exhibit different behavior at dosage of alkaline phosphatase normalization showing that the Exp2 is more associated with induction of cell differentiation process and that Exp1 is more related to the mineralization process.</p></sec>


2016 ◽  
Vol 63 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Marijana Popović Bajić ◽  
Violeta Petrović ◽  
Vanja Opačić Galić ◽  
Vesna Danilović ◽  
Vukoman Jokanović ◽  
...  

Summary Introduction Direct pulp capping is an important therapeutic method that has goal to provide formation of dentin bridge and healing process of the pulp. The aim of this study was to investigate the effects of new nanostructural materials based on calcium silicate systems and hydroxyapatite on exposed dental pulp in Vietnamese pigs. Material and Methods The study was conducted on 30 teeth of two Vietnamese pigs (Sus scrofa verus). On buccal surfaces of incisors, canines and first premolars, class V cavities were prepared with a small round bur and pulp horn was exposed. In the first experimental group (10 teeth) the perforation was covered with new nanostructural material based on calcium silicate systems (CS). In the second experimental group, the perforation was covered with compound of calcium silicate systems and hydroxyapatite (HA-CS) (10 teeth). In the control group, exposed pulp was covered with Pro Root MTA® (Dentsply Tulsa Dental, Johnson City, TN, USA) (10 teeth). All cavities were restored with glass ionomer cement (GC Fuji VIII, GC Corporation, Tokyo, Japan). Observation period was 28 days. After sacrificing the animals, histological preparations were done to analyze the presence of dentin bridge, inflammatory reaction of the pulp, pulp tissue reorganization and the presence of bacteria. Results Dentin bridge was observed in all teeth (experimental and control groups). Inflammation of the pulp was mild to moderate in all groups. Neoangiogenesis and many odontoblast like cells responsible for dentin bridge formation were detected. Necrosis was not observed in any case, neither the presence of Gram-positive bacteria in the pulp. Conclusion Histological analysis indicated favorable therapeutic effects of new nanostructural materials based on calcium silicate systems and hydroxyapatite for direct pulp capping in teeth of Vietnamese pigs.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3572
Author(s):  
P. D. Swaminathan ◽  
Md. Nizam Uddin ◽  
P. Wooley ◽  
Ramazan Asmatulu

Bone regeneration for replacing and repairing damaged and defective bones in the human body has attracted much attention over the last decade. In this research, highly porous polyetheretherketone (PEEK)/hydroxyapatite (HA) bionanocomposite scaffolds reinforced with carbon fiber (CF) and carbon nanotubes (CNTs) were fabricated, and their structural, mechanical, and biological properties were studied in detail. Salt porogen (200–500 µm size) leaching methods were adapted to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. In biological tests, nanocomposites proved to be non-toxic and have very good cell viability. In addition, bone marrow cell growth was observed, and PEEK/HA biocomposites with carbon particles showed increased cell attachment over the neat PEEK/HA composites. In cell viability tests, bionanocomposites with 0.5 wt% CNTs established good attachment of cells on disks compared to neat PEEK/HA biocomposites. A similar performance was seen in culture tests of bone marrow cells (osteoblasts and osteoclasts). The 0.5 wt% CF for osteoblasts and 1 wt% CNTs for osteoclasts showed higher cell attachment. The addition of carbon-based nanomaterials into PEEK/HA has been identified as an effective approach to improve cell attachment as well as mechanical and biological properties. With confirmed cell attachment and sustained viability and proliferation of the fabricated PEEK/HA/CNTs, CF bionanocomposites were confirmed to possess excellent biocompatibility and will have potential uses in bone scaffolding and other biomedical applications.


2016 ◽  
Vol 41 (3) ◽  
pp. 293-304 ◽  
Author(s):  
DG Soares ◽  
N Marcomini ◽  
FG Basso ◽  
TN Pansani ◽  
J Hebling ◽  
...  

SUMMARY Objectives: The tooth/restoration interface may act as a pathway for hydrogen peroxide (H2O2) diffusion into the pulp chamber. Therefore, the influence of resin-modified glass ionomer cement (RMGIC) and resin composite simulated restorations on the cytotoxicity of an in-office bleaching gel was assessed in vitro. Materials and Methods: Cavities in enamel/dentin discs restored with RMGIC Vitremer (3M ESPE) or Single Bond/Filtek Z350 (3M ESPE) resin composite (RC) were subjected or not subjected to hydrolytic degradation (HD). A 35%-H2O2 bleaching gel was applied to simulated restored and nonrestored enamel surfaces, and culture medium in contact with the dentin substrate (extract) was collected and applied to MDPC-23 cells. Nonrestored discs subjected or not subjected to bleaching were used as positive and negative controls, respectively. Cell viability, oxidative stress, interleukin (IL)-1β expression, alkaline phosphatase (ALP) activity, and mineralized nodule deposition were evaluated. The H2O2 in the extracts was quantified. Data were subjected to statistical analysis. Results: Higher oxidative stress associated with reduced cell viability, ALP activity, and mineralized nodule deposition was observed for all bleached groups compared with the negative control group. The RMGIC/HD group, which presented the highest H2O2 diffusion, had the lowest values of cell viability, ALP activity, and mineralized nodule deposition, as well as significantly increased IL-1β expression. Conclusions: Dental cavities restored with the RMGIC subjected to hydrolytic degradation allowed for more intense diffusion of H2O2 into the pulp chamber, intensifying the toxicity of a 35%-H2O2 bleaching gel to pulp cells.


2021 ◽  
Vol 15 (3) ◽  
pp. 152-156
Author(s):  
Celso Afonso Klein-Junior ◽  
Roberto Zimmer ◽  
Tãnyre Dobler ◽  
Vanessa Oliveira ◽  
Daniel Rodrigo Marinowic ◽  
...  

Background. Direct pulp capping is a method designed to preserve the exposed dental pulp. Due to good biological, physical, and mechanical properties, new versions of calcium silicate-based materials have been developed as pulp capping materials. The present study aimed to evaluate the cytotoxic effects of four calcium silicate-based pulp capping materials, of which the Bio-C Repair Íon+ is still in an experimental phase. Methods. Biodentine, MTA Repair HP, Bio-C Repair, and Bio-C Repair Íon+ cements were dispensed in a metallic matrix to produce 125-mm3 specimens, which were immersed in Dulbecco’s Modified Eagle Medium (DMEM) to obtain extracts. NIH 3T3 cells were cultured and exposed to the extracts for 24 hours and seven days. Cell viability was assessed by the methyl tetrazolium test (MTT). The mean values for the experimental and control groups (without treatment) were compared by analysis of variance (ANOVA) and post hoc Tukey tests, considering a significance level of 5%. Results. All the tested materials demonstrated a reduction in cell viability (P<0.05). According to ISO 10993-5: 2009 (E), Bio-C Repair Íon+ exhibited mild and moderate cytotoxicity in the 24- hour and 7-day analyses, respectively. Bio-C Repair and Biodentine showed mild cytotoxicity, and MTA Repair HP exhibited moderate cytotoxicity at both intervals. Conclusion. The highest cell viability was demonstrated by Biodentine, MTA, and Repair HP, in descending order. Bio-C Repair and Bio-C Repair Íon+ showed moderate cytotoxicity, similar to MTA Repair HP in the 7-day analysis.


2018 ◽  
Vol 29 (5) ◽  
pp. 452-458 ◽  
Author(s):  
Bernardo Cesar Costa ◽  
Juliane Maria Guerreiro-Tanomaru ◽  
Roberta Bosso-Martelo ◽  
Elisandra Márcia Rodrigues ◽  
Idomeo Bonetti-Filho ◽  
...  

Abstract This study evaluated physicochemical properties, cytotoxicity and bioactivity of MTA Angelus (MTA), calcium silicate-based cement (CSC) and CSC with 30% Ytterbium oxide (CSC/Yb2O3). Setting time was evaluated using Gilmore needles. Compressive strength was evaluated in a mechanical machine. Radiopacity was evaluated using radiographs of materials and an aluminum scale. Solubility was evaluated after immersion in water. Cell viability was evaluated by means of MTT assay and neutral red staining, and the mineralization activity by using alkaline phosphatase activity and Alizarin Red staining. The data were submitted to ANOVA, Tukey and Bonferroni tests (5% significance). The bioactive potential was evaluated by scanning electron microscopy. The materials presented similar setting time. MTA showed the lowest compressive strength. MTA and CSC/Yb2O3 presented similar radiopacity. CSC/Yb2O3 showed low solubility. Saos-2 cell viability tests showed no cytotoxic effect, except to 1:1 dilution in NR assay which had lower cell viability when compared to the control. ALP at 1 and 7 days was similar to the control. MTA and CSC had greater ALP activity at 3 days when compared to control. All the materials present higher mineralized nodules when compared with the control. SEM analysis showed structures suggesting the presence of calcium phosphate on the surface of materials demonstrating bioactivity. Ytterbium oxide proved to be a properly radiopacifying agent for calcium silicate-based cement since it did not affected the physicochemical and biological properties besides preserving the bioactive potential of this material.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2684
Author(s):  
Camila Corral Nunez ◽  
Diego Altamirano Gaete ◽  
Miguel Maureira ◽  
Javier Martin ◽  
Cristian Covarrubias

This study aimed to investigate the cytotoxicity and bioactivity of a novel nanocomposite containing nanoparticles of bioactive glass (nBGs) on human dental pulp stem cells (hDPSCs). nBGs were synthesized by the sol–gel method. Biodentine (BD) nanocomposites (nBG/BD) were prepared with 2 and 5% wt of nBG content; unmodified BD and glass ionomer cement were used as references. Cell viability and attachment were evaluated after 3, 7 and 14 days. Odontogenic differentiation was assessed with alkaline phosphatase (ALP) activity after 7 and 14 days of exposure. Cells successfully adhered and proliferated on nBG/BD nanocomposites, cell viability of nanocomposites was comparable with unmodified BD and higher than GIC. nBG/BD nanocomposites were, particularly, more active to promote odontogenic differentiation, expressed as higher ALP activity of hDPSCs after 7 days of exposure, than neat BD or GIC. This novel nanocomposite biomaterial, nBG/BD, allowed hDPSC attachment and proliferation and increased the expression of ALP, upregulated in mineral-producing cells. These findings open opportunities to use nBG/BD in vital pulp therapies.


2021 ◽  
pp. 004051752199488
Author(s):  
Shaoju Fu ◽  
Peihua Zhang

Polylactic acid (PLA) and polyglycolide acid (PGA) have been the most widely used biomedical materials in the acupoint catgut-embedding therapy (ACET) fields. However, a lack of antibacterial and biological properties is a definite obstacle that hinders its further application in juvenile pseudomyopia treatment. Here, four different kinds of PLA and PGA threads were fabricated, and were then modified using chitosan–gelatin coating method. Afterwards, PLA and PGA braided threads were fully characterized with respect to structure, mechanical and biological properties. The results showed that the surface roughness of PLA and PGA had been greatly improved; FT-IR analysis proved the existence of chitosan and gelatin molecules, the modified PLA (M-PLA-a = 87.1° ± 1.5°, M-PLA-b = 83.5° ± 1.4°) had smaller contact angle values than that of non-modified PLA (PLA-a = 108.6° ± 2.6°, PLA-b = 116.2° ± 3.1°), and that of the modified PGA (M-PGA-a = 79.3° ± 3.2°, M-PGA-b = 73.8° ± 1.8°) was smaller compared with that of the non-modified PGA (PGA-a = 98.2° ± 1.7°, PGA-b = 83.5° ± 1.4°). Based on the mechanical testing results, the tensile property and flexibility of samples increased slightly, and their swelling behavior also increased correspondingly. All the prepared samples exhibited non-toxicity with cell viability of more than 75%, and samples M-PGA-b presented the largest cell attachment ratios. In sum, this work exhibited great potential in the ACET application for juvenile pseudomyopia treatment.


Sign in / Sign up

Export Citation Format

Share Document