scholarly journals Ytterbium Oxide as Radiopacifier of Calcium Silicate-Based Cements. Physicochemical and Biological Properties

2018 ◽  
Vol 29 (5) ◽  
pp. 452-458 ◽  
Author(s):  
Bernardo Cesar Costa ◽  
Juliane Maria Guerreiro-Tanomaru ◽  
Roberta Bosso-Martelo ◽  
Elisandra Márcia Rodrigues ◽  
Idomeo Bonetti-Filho ◽  
...  

Abstract This study evaluated physicochemical properties, cytotoxicity and bioactivity of MTA Angelus (MTA), calcium silicate-based cement (CSC) and CSC with 30% Ytterbium oxide (CSC/Yb2O3). Setting time was evaluated using Gilmore needles. Compressive strength was evaluated in a mechanical machine. Radiopacity was evaluated using radiographs of materials and an aluminum scale. Solubility was evaluated after immersion in water. Cell viability was evaluated by means of MTT assay and neutral red staining, and the mineralization activity by using alkaline phosphatase activity and Alizarin Red staining. The data were submitted to ANOVA, Tukey and Bonferroni tests (5% significance). The bioactive potential was evaluated by scanning electron microscopy. The materials presented similar setting time. MTA showed the lowest compressive strength. MTA and CSC/Yb2O3 presented similar radiopacity. CSC/Yb2O3 showed low solubility. Saos-2 cell viability tests showed no cytotoxic effect, except to 1:1 dilution in NR assay which had lower cell viability when compared to the control. ALP at 1 and 7 days was similar to the control. MTA and CSC had greater ALP activity at 3 days when compared to control. All the materials present higher mineralized nodules when compared with the control. SEM analysis showed structures suggesting the presence of calcium phosphate on the surface of materials demonstrating bioactivity. Ytterbium oxide proved to be a properly radiopacifying agent for calcium silicate-based cement since it did not affected the physicochemical and biological properties besides preserving the bioactive potential of this material.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Arthur Dias Galarça ◽  
Wellington Luiz de Oliveira Da Rosa ◽  
Tiago Machado Da Silva ◽  
Giana da Silveira Lima ◽  
Neftalí Lenin Villarreal Carreño ◽  
...  

Introduction. Mineral Trioxide Aggregate (MTA) is a tricalcium-based silicate, dicalcium silicate matrix. Despite its good biologic properties, some clinicians still claim to have difficulties in handling MTA after its preparation due to its sandy consistency. The aim of the present study was to evaluate the physicochemical properties and cytotoxicity of MTA Repair HP (Angelus, Londrina, PR, Brazil) compared with MTA Angelus (Angelus, Londrina, PR, Brazil). Materials and Method. The properties assessed were particle size, setting time, flow, film thickness, radiopacity, water solubility, compressive strength, and cytotoxicity. Statistical analysis was performed considering p < 0.05 as statistically significant. Results. For radiopacity, water absorption and solubility MTA Repair HP were statistically similar to MTA Angelus. The MTA Angelus had statistically different film thickness values, higher than MTA Repair HP (p < 0.05). Besides, MTA Angelus showed a lower and statistically different compressive strength after 28 days than MTA Repair HP (p<0.05). Additionally, MTA Repair HP set more slowly (p < 0.05). Relative to cell viability, MTA Repair HP was statistically similar to MTA Angelus after 24 and 48 h in cell viability. Conclusions. The MTA Repair HP presented similar cell viability, lower film thickness, higher flow, setting time, and compressive strength values after 28 days than MTA Angelus. In general, the MTA Repair HP presented physicochemical and biological properties similar to the MTA Angelus.


2016 ◽  
Vol 27 (5) ◽  
pp. 508-514 ◽  
Author(s):  
Fernando Vazquez-Garcia ◽  
◽  
Mário Tanomaru-Filho ◽  
Gisselle Moraima Chávez-Andrade ◽  
Roberta Bosso-Martelo ◽  
...  

Abstract Mineral trioxide aggregate (MTA) and Portland cement (PC) are calcium silicate cements. They have similar physicochemical, mechanical and biological properties. The addition of zirconium oxide (ZrO2) to PC provides radiopacity. Silver nanoparticles (AgNPs) may improve some properties of cements. The aim of this study was to evaluate the effect of AgNPs on physicochemical/mechanical properties and antibacterial activity of white MTA (WMTA) and PC associated with ZrO2. The following materials were evaluated: WMTA; PC 70% + ZrO2 30%; WMTA+ AgNPs; and PC 70% + ZrO2 30% + AgNPs. The study evaluated radiopacity, setting time, pH, compressive strength and solubility. For radiopacity analysis, radiographs were made alongside an aluminum (Al) step wedge. To evaluate the antibacterial activity, direct contact test was performed on planktonic cells and Enterococcus faecalis biofilm induced on bovine root dentin for 14 days. The experimental periods were 5 and 15 h. Data were obtained as CFU mL-1. The obtained data were submitted to ANOVA and Tukey tests (p<0.05). The addition of AgNPs to WMTA increased the pH, lowered the solubility and the initial and final setting times. The addition of AgNPs to PC/ZrO2 maintained the pH, lowered the solubility, and increased the setting time and compressive strength. The radiopacity of all materials was higher than 4 mmAl. The addition of AgNPs promoted an increase in antibacterial activity for calcium silicate cements and favored the physicochemical and mechanical properties of the materials.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1843
Author(s):  
Kyung-Hyeon Yoo ◽  
Yong-Il Kim ◽  
Seog-Young Yoon

Calcium silicate-based cement has been widely used for endodontic repair. However, it has a long setting time and needs to shorten setting time. This study investigated the effects of magnesium (Mg) ion on the setting reaction, mechanical properties, and biological properties of calcium silicate cement (CSC). Sol-gel route was used to synthesize Mg ion-doped calcium silicate cement. Synthesized cement was formulated with the addition of different contents of Mg ion, according to 0, 1, 3, 5 mol% of Mg ion-doped calcium silicate. The synthesized cements were characterized with X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). We also evaluated the physicochemical and biological properties of cement, such as the setting time, compressive strength, micro-hardness, simulated body fluid (SBF) immersion, cytotoxicity, and cell differentiation tests. As a result, the Mg ion improves the hydration properties of calcium silicate cement, and the setting time is reduced by increasing the amounts of Mg ion. However, the mechanical properties deteriorated with increasing Mg ion, and 1 and 3 mol% Mg-doped calcium silicate had appropriate mechanical properties. Also, the results of biological properties such as cytotoxicity, ALP activity, and ARS staining improved with Mg ion. Consequently, the optimal condition is 3 mol% of Mg ion-doped calcium silicate (3%Mg-CSC).


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4661
Author(s):  
Yemi Kim ◽  
Donghee Lee ◽  
Hye-Min Kim ◽  
Minjoo Kye ◽  
Sin-Young Kim

We compared calcium silicate-based pulp capping materials to conventional calcium hydroxide in terms of their biological properties and potential effects on odontogenic differentiation in human dental pulp stem cells (hDPSCs). We cultured hDPSCs on disks (7-mm diameter, 4-mm high) of ProRoot MTA (Dentsply Tulsa Dental Specialties), Biodentine (Septodont), TheraCal LC (Bisco), or Dycal (Dentsply Tulsa Dental Specialties). Cell viability was assessed with cell counting (CCK) and scanning electron microscopy (SEM). Odontogenic activity was assessed by measuring alkaline phosphatase (ALP) activity and gene expression (quantitative real-time PCR). CCK assays showed that Dycal reduced cell viability compared to the other materials (p < 0.05). SEM showed low and absent cell attachment on TheraCal LC and Dycal disks, respectively. hDPSCs exposed to TheraCal LC and Dycal showed higher ALP activity on day 6 than the control group (p < 0.05). The day-9 Runx2 expression was higher in the ProRoot MTA and TheraCal LC groups than in the control group (p < 0.05). On day 14, the ProRoot MTA group showed the highest dentin sialophosphoprotein levels (not significant; p > 0.05). In conclusion, various pulp capping materials, except Dycal, exhibited biological properties favorable to hDPSC viability. ProRoot MTA and TheraCal LC promoted higher Runx2 expression than Biodentine. Future studies should explore the odontogenic potential of pulp capping materials.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 261-266 ◽  
Author(s):  
L. P. Silva ◽  
M. D. P. Ribeiro ◽  
E. S. Trichês ◽  
M. Motisuke

Abstract Calcium phosphate cements (CPCs) are potential materials for repairing bone defects, mainly due to their excellent biocompatibility and osteoconductivity. Nevertheless, their low mechanical properties limit their usage in clinical applications. The gelatin addition may improve the mechanical and biological properties of CPCs, but their solubility in water may increase the porosity of the cement during degradation. Thus, the aim of this work was to investigate the influence of gelatin on the setting time, compressive strength and degradation rate of a brushite cement. CPCs were prepared with the addition of 0, 5, 10 and 20 wt% of gelatin powder in the solid phase of the cement. The results indicated that the setting time increased with gelatin. Furthermore, cement with 20 wt% of gelatin had an initial compressive strength of 14.1±1.8 MPa while cement without gelatin had 4.5±1.2 MPa. The weight loss, morphology and compressive strength were evaluated after degradation in Ringer’s solution. According to the weight loss data, gelatin was eliminated of samples during degradation. It was concluded that the presence of gelatin improved CPCs mechanical properties; however, as degradation in Ringer’s solution evolved, cement compressive strength decreased due to gelatin dissolution and, consequently, an increase in sample porosity.


2015 ◽  
Vol 19 (8) ◽  
pp. 2015-2025 ◽  
Author(s):  
Guilherme F. Silva ◽  
Mário Tanomaru-Filho ◽  
Maria I. B. Bernardi ◽  
Juliane M. Guerreiro-Tanomaru ◽  
Paulo S. Cerri

2019 ◽  
Vol 9 (3) ◽  
pp. 29-36
Author(s):  
Maíra do Prado ◽  
Carolina Oliveira de Lima ◽  
Hugo Gonçalves Dutra ◽  
Jefferson Marion ◽  
Maria Das Graças Afonso Miranda Chaves ◽  
...  

Objetivo: o objetivo desse estudo é realizar uma revisão de literatura em relação às propriedades físico- -químicas e biológicas do Biodentine, seu emprego na Endodontia e discutir, com base nas evidências científicas encontradas na literatura, se esse material poderá ser um substituto ao MTA. Métodos: foi realizada uma busca na literatura na base de dados PubMed, usando os termos em inglês: Biodentine, calcium silicate, MTA, properties, setting time, radiopacity, solubility, physicochemical properties, porosity, hydration, biocompatibility, bioactivity, microhardness, compressive strength, bond strength, irrigants, furcal perforation, retrograde filling material, revitalization, revascularization, endodontics, apexification. Cinquenta artigos foram incluídos. Resultados: os artigos revisados sugerem que o Biodentine tem características favoráveis e que tem alcançado resultados promissores em relação ao MTA. Conclusão: o Biodentine pode ser considerado um eventual substituto ao MTA.


2018 ◽  
Vol 29 (6) ◽  
pp. 773-785 ◽  
Author(s):  
I.-Ting Wu ◽  
Ting-Yi Chiang ◽  
Chun-Cheng Chen ◽  
Yung-Chang Chen ◽  
Shinn-Jyh Ding

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcos Coelho Santiago ◽  
Ana Lívia Gomes-Cornélio ◽  
Laudimar Alves de Oliveira ◽  
Mario Tanomaru-Filho ◽  
Loise Pedrosa Salles

AbstractCalcium silicate-based cements differ markedly in their radiopacifiers and the presence of calcium sulfate, aluminates, carbonates and other components that can affect their biological properties. This study aimed to compare the biological properties of six calcium silicate cements in human osteoblastic cell culture (Saos-2 cells): Bio-C Repair (Bio-C), PBS HP (PBS-HP), Biodentine (Biodentine), MTA Repair HP (MTA-HP), NeoMTA Plus (NeoMTA-P), and ProRoot MTA (ProRoot). After exposure to these materials, the cells were analyzed by MTT, wound healing, cell migration, and alkaline phosphatase activity (ALP) assays, real-time PCR (qPCR) analysis of the osteogenesis markers (osteocalcin or bone gamma-carboxyglutamate protein, BGLAP; alkaline phosphatase, ALPL; bone sialoprotein or secreted phosphoprotein 1, BNSP), and alizarin red staining (ARS). Curiously, the migration rates were low 24–48 h after exposure to the materials, despite the cells showing ideal rates of viability. The advanced and intermediate cell differentiation markers BGLAP and BNSP were overexpressed in the Bio-C, MTA-HP, and ProRoot groups. Only the Biodentine group showed ALPL overexpression, a marker of initial differentiation. However, the enzymatic activity was high in all groups except Biodentine. The mineralization area was significantly large in the NeoMTA-P, ProRoot, PBS-HP, MTA-HP, and Bio-C groups. The results showed that cellular environmental stiffness, which impairs cell mobility and diverse patterns of osteogenesis marker expression, is a consequence of cement exposure. Environmental stiffness indicates chemical and physical stimuli in the microenvironment; for instance, the release of cement compounds contributes to calcium phosphate matrix formation with diverse stiffnesses, which could be essential or detrimental for the migration and differentiation of osteoblastic cells. Cells exposed to Bio-C, PBS-HP, ProRoot, NeoMTA-P, and MTA-HP seemed to enter the advanced or intermediate differentiation phases early, which is indicative of the diverse potential of cements to induce osteogenesis. Cements that quickly stimulate osteoblast differentiation may be ideal for reparative and regenerative purposes since they promptly lead to dentin or bone deposition.


2021 ◽  
Vol 19 (3) ◽  
pp. 166-170
Author(s):  
A. V. Mitronin ◽  
D. A. Ostanina ◽  
Yu. A. Mitronin

The introduction of modified bioceramic calcium silicate- based materials into clinical practice has changed the standards and strategies of endodontic treatment. The review article highlights modern calcium silicate- based cements that are used in various areas of endodontics, including vital pulp therapy, root canal obturation, management of endodontic complications and pulp regeneration. The classifications of bioceramic materials based on their chemistry and specific use in endodontics are presented. The physicochemical and biological properties of various types of materials, as well as the features of their clinical application, are described.


Sign in / Sign up

Export Citation Format

Share Document